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ABSTRACT
Federated learning (FL) is typically performed in a synchro-

nous parallel manner, and the involvement of a slow client

delays the training progress. Current FL systems employ

a participant selection strategy to select fast clients with

quality data in each iteration. However, this is not always

possible in practice, and the selection strategy has to navigate

a knotty tradeoff between the speed and the data quality.

This paper makes a case for asynchronous FL by presenting
Pisces, a new FL system with intelligent participant selection

and model aggregation for accelerated training despite slow

clients. To avoid incurring excessive resource cost and stale

training computation, Pisces uses a novel scoring mechanism

to identify suitable clients to participate in each training it-

eration. It also adapts the aggregation pace dynamically to

bound the progress gap between the participating clients

and the server, with a provable convergence guarantee in

a smooth non-convex setting. We have implemented Pisces

in an open-source FL platform, Plato, and evaluated its per-

formance in large-scale experiments with popular vision

and language models. Pisces outperforms the state-of-the-

art synchronous and asynchronous alternatives, reducing

the time-to-accuracy by up to 2.0× and 1.9×, respectively.

CCS CONCEPTS
• Computing methodologies → Supervised learning; •
Security and privacy → Database and storage security.
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1 INTRODUCTION
Federated learning [48] (FL) enables multiple clients to col-

laboratively and privately train a shared model, under the

orchestration of a central server. At its core, FL lets clients

keep their private data onsite, while only transferring (pro-

tected) local updates containing minimum information, such

as the gradients or the model weights [33], to the server.

By evading the privacy risks of centralized learning, FL has

gained increasing popularity in a multitude of applications,

such as mobile services [9, 17, 18, 54, 55, 70], financial busi-

ness [46, 65], and medical care [44, 52].

Current FL systems orchestrate the training process fol-

lowing a synchronous parallel scheme, where the server waits
for all participating clients to finish local training and then

uses the aggregated updates to refine the global model [6, 48].

While synchronous FL is easy to implement, the time-to-
accuracy, measured by the wall clock time needed to train a

model to the target accuracy, can be substantially delayed

in the presence of stragglers – those whose updates arrive

much later than others. In a typical FL setting, clients have

a wide range of computing capabilities and their training

speed may differ by orders of magnitude [38, 67, 69], leading

to a salient straggler problem (§2.1).

A common straggler mitigation approach in FL is to iden-

tify slow clients and exclude them from participating into the

training. Existing works propose various metrics to quantify

the computing capabilities of clients, based on which they

reduce the involvement of slow clients [8, 38, 51]. Yet, partic-

ipant selection may not always work well. Consider a patho-

logical case where the client’s speed and data quality are in-
versely correlated [24, 38]. In this case, prioritizing fast clients
inevitably excludes those slower, yet informative clients pos-

sessing quality data. As the time-to-accuracy depends on

both the speed and data quality of participants, reconciling

the two objectives often requires navigating an unpleasant,
knotty tradeoff. We show in §2.2 that even the state-of-the-art

https://doi.org/10.1145/3542929.3563463
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participant selection strategy, namely Oort [38], can make

an inefficient decision that underperforms the naive random

selection strategy by 2.7×.
In this paper, we turn to a more effective solution that

fundamentally mitigates the straggler problem by switch-

ing to an asynchronous parallel scheme. In asynchronous FL,

the server can both (1) select a subset of idle clients to run

and (2) aggregate the received local updates at any time, re-

gardless of the training progress of other clients. Without a

synchronization barrier, there is no need to wait for strag-

gling clients, thus relieving the potential tension between

the client speed and the data quality. While the intuition is

simple, a few challenges remain open to solve.

First, asynchronous FL results in more frequent client par-

ticipations, many of which are not very helpful, leading to

wasted computations and low resource efficiency. Existing
approaches commonly involve all clients and keep them run-

ning throughout the training process [10, 57, 68]. Yet, our

experiments show that compared with selecting only a small

portion (e.g., 25%) of clients, keeping everyone busy yields

marginal performance gains (e.g., ≤1.5×) yet substantial re-
source overhead (e.g., 3.6-6.7×) (§4.1). While this points to

controlled concurrency, i.e., limiting the maximum amount

of clients allowed to run concurrently [50], it remains un-

clear how to fully utilize each quota for running clients to

maximize resource efficiency in asynchronous FL.

Second, eliminating the synchronization barrier results

in stale computation. When a client reports its local update,

the global model maintained on the server may have gone

far ahead of the local version based on which the update is

computed. The staleness of the computation, measured by

the progress gap between the server and the client, harms the

quality of update: both theoretical analysis [50] and empiri-

cal results [68] show that incorporating stale local updates

can slow the training convergence. It is hence desirable to

bound the staleness at a low level. Existing approaches, no-

tably buffered aggregation [50], though effective in staleness

control, provide no guaranteed staleness bound and rely on

manual tuning to adapt to different system settings.

Tackling the above challenges, we present Pisces
1
, an end-

to-end asynchronous parallel scheme for efficient FL training

(§3). To make a good use of each quota under controlled con-

currency, Pisces conducts guided participant selection. In a

nutshell, Pisces prioritizes clients with high data quality,

which is measured by the clients’ training loss based on the

approximation of importance sampling [29, 34]. Given that

the training loss may be misleading in case of corrupted data

or malicious clients, Pisces clusters the loss values of clients,

1
Symbolized by two fish swimming, Pisces is a constellation of the zodiac.

We use it as a metaphor for the two design knobs that we optimize in

asynchronous FL.

based on which it identifies outliers and excludes them from

being selected. Moreover, Pisces predicts the staleness of

clients to avoid inducing stale computation. Our design elim-

inates the unpleasant tradeoff between the client’s speed and

the data quality, achieving high resource efficiency under

the asynchronous settings (§4).

To limit the impacts of stale computation that is already

induced, Pisces further adopts an adaptive aggregation pace
control with a novel online algorithm. By dynamically adjust-

ing the aggregation interval to match the speed of running

clients, Pisces balances the aggregation load over time for be-

ing both steady in convergence and scalable to a large client

base. The algorithm automatically adapts to different distri-

butions of clients’ speed without manual tuning (§5). It can

also bound the clients’ staleness under any target value, with

a provable convergence guarantee in a smooth non-convex

setting (§6.1).

We have implemented Pisces atop Plato [64], an open-

source FL platform (§7), under practical settings of system

and data heterogeneity across 100-400 clients (§8). Extensive

experiments over image classification and language model

applications show that, compared to the state-of-the-art syn-

chronous and asynchronous FL designs, namely Oort [38]

and FedBuff [50], Pisces accelerates the time-to-accuracy by

up to 2.0× and 1.9×, respectively. Pisces is also shown to be

insensitive to the choice of hyperparameters.

In summary, we make the following contributions:

(1) We highlight the knotty tradeoff between clients’ speed

and data quality faced by synchronous FL.

(2) We propose new algorithms to automate participant

selection and aggregation pace control in asynchro-

nous FL for improved resource efficiency and reduced

stale computation.

(3) We implement and evaluate Pisces through large-scale

deployment to show its performance advantages over

the state-of-the-art solutions under practical settings.

(4) We open-source system implementation for Pisces [1]

and hereby invite the community to contribute more

to FL research.

2 BACKGROUND AND MOTIVATION
In this section, we briefly introduce synchronous FL and its

inefficiency in the presence of stragglers (§2.1). We then dis-

cuss the limitations of current participant selection strategies

when navigating the tradeoff of clients’ speeds and data qual-

ity in synchronous FL, thus motivating the need for relaxing

the synchronization barrier (§2.2).

2.1 Synchronous Federated Learning
Federated learning (FL) has become an emerging approach

for building a model from decentralized data. To orchestrate
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Figure 1: Sychronous and asynchronous FL [24].

the training process, current FL systems employ the parame-

ter server architecture [42, 59] with a synchronous parallel
design [6, 28, 48], where a server refines the global model

on a round basis, as illustrated in Figure 1a. In each round,

the server randomly selects a subset of online clients to par-

ticipate and sends the current global model to them. These

clients then perform a certain number of training steps using

their local datasets. Finally, the server waits for all partici-

pants to report their local updates and uses the aggregated

updates to refine the global model before advancing to the

next round.

Performance bottlenecks. The performance of synchro-

nous FL can be significantly harmed by straggling clients
that process much slower than non-stragglers. This problem

becomes particularly salient in cross-device scenarios, where

the computing power and data amount vary across clients by

orders ofmagnitude [7, 38, 67, 69]. In our testbed experiments

(detailed in Section 8.1), the server running FedAvg [48] algo-

rithm remains idle for 33.2-57.2% of the training time waiting

for the slowest clients to report updates.

To mitigate stragglers, simple solutions include periodic

aggregation or over-selection [6]. The former imposes a dead-

line for participants to report updates and ignores late sub-

missions; the latter selects more participants than needed

but only waits for the reports from a specific number of early

arrivals. Both solutions waste the computing efforts of slow

clients, leading to suboptimal resource efficiency. Developers

then seek to improve over random selection by identifying

and excluding stragglers in the first place.

2.2 Participant Selection
By prioritizing fast clients, the average round latency will

be shortened compared to random selection. However, this

is not sufficient to achieve a shorter time-to-accuracy, which
is the product of average round latency and the number of

rounds taken to reach the target accuracy. To avoid inflating

the number of rounds when handling stragglers, participant

selection should also account for the clients’ data quality. As

data quality may not be positively correlated with speeds, a

good strategy must strike a balance in-between.

Prior arts. To navigate the tradeoff between the two fac-

tors, extensive research efforts such as FedCS [51], TiFL [8],

Oort [38] and AutoFL [35] have been made in the literature,

among which Oort is the state-of-the-art for its fine-grained

navigation and training-free nature. To guide participant

selection, Oort ranks each client 𝑖 with a utility score 𝑈𝑂𝑜𝑟𝑡𝑖

that jointly considers the client’s speed and data quality:

𝑈𝑂𝑜𝑟𝑡𝑖 = |𝐵𝑖 |
√

1

|𝐵𝑖 |
∑
𝑘∈𝐵𝑖

𝐿𝑜𝑠𝑠 (𝑘)2︸                        ︷︷                        ︸
𝐷𝑎𝑡𝑎 𝑞𝑢𝑎𝑙𝑖𝑡𝑦

× (𝑇
𝑡𝑖
)1(𝑇<𝑡𝑖 )×𝛼︸          ︷︷          ︸

𝑆𝑦𝑠𝑡𝑒𝑚 𝑠𝑝𝑒𝑒𝑑

. (1)

In a nutshell, the first component is the aggregate training

loss that reflects the volume and distribution of the client’s

dataset 𝐵𝑖 . The second component compares the client’s

completion time 𝑡𝑖 with the developer-specified duration 𝑇

and penalizes any delay (which makes the indicator 1(𝑇 <

𝑡𝑖 ) outputs 1) with an exponent 𝛼 > 0. Oort prioritizes the

use of clients with high utility scores.

Inefficiency. We briefly explain the strict penalty effect
that Equation (1) imposes on slow clients. Following the

evaluation setting in Oort, assume 𝛼 = 2. The quantified

data quality of a straggler 𝑖 will then be divided by a factor

proportional to the square of its latency 𝑡𝑖 . Given that in

Oort a client is selected with probability in proportion to its

utility score, such a penalty implies that straggling clients

have much less chance of being selected in the training than

non-stragglers.

However, imposing such a heavy penalty is not always

desirable. Consider a pathological case where the clients’

speeds and data quality are inversely correlated, i.e., faster

clients are coupled with fewer data of poorer quality. Note

that this is not uncommon in practice [24, 38]; for exam-

ple, it usually takes a client with a larger dataset a longer

time to finish training. In this case, strictly penalizing slow

clients can lead to using an insufficient amount or quality of

data, which can impair the time-to-accuracy compared to no

optimization. To illustrate this problem, we compare Oort

over FedAvg [48] (that uses random selection) in a small-

scale training task where 5 out of 20 clients are selected

at each round to train over the MNIST dataset. In this em-

ulation experiment (detailed settings in Section §8.1), the

completion time of clients are configured following the Zipf

distribution (𝑎 = 1.2) [26, 41, 63] so that the majority are fast

while the rest are extremely slow. Accordingly, fast clients

are associated with fewer data samples of more unbalanced

label distribution and vice versa, leveraging latent Dirichlet

allocation (LDA) [3, 5, 23, 56].

Figure 2a depicts the time taken to reach 95% accuracy.

Oort with straggler penalty factor 𝛼 = 2.0 suffers 2.7× slow-

down than FedAvg. According to Figure 2b, Oort’s poor
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Figure 2: Slow clients are overlooked by Oort [38]
when clients’ speed and data quality are at odds.

performance results from its bias toward fast clients. Under

strict penalties, stragglers in Oort get way less attention than

others, despite having rich data of good quality. Instead, Fe-

dAvg evenly picks each client, which involves stragglers for

enough times and thus leads to faster convergence.

Generality. To confirm that the strict penalty effect gener-

ally exists, we evaluate Oort across different small 𝛼 ’s: 2.0,

1.5, 1.0, 0.5, and 0. As Figure 2a shows, while using a more

gentle straggler penalty factor (i.e., smaller 𝛼) does yield a

shorter time-to-accuracy, the use of nonzero factors is still

harmful. For Oort to improve over FedAvg, it should ignore

the speed disparity and purely focus on prioritizing clients

with high data quality (i.e., 𝛼 = 0). This strategy, however,

deviates from Oort’s original design and mandates manual

tuning with prior knowledge. This limitation also generally

applies to other optimization alternatives due to the tricky

tradeoff between clients’ speeds and data quality.

In short, participant selection does not completely address

the performance bottlenecks in synchronous FL. The limited

tolerance for stragglers is responsible for such inefficiency.

3 PISCES OVERVIEW
To sidestep the above tradeoff faced by synchronous FL, we

design Pisces, an asynchronous FL framework that improves

training efficiency with novel algorithmic principles. We first

give an overview of Pisces, including its design knobs and

architecture.

Design knobs. The advantages of switching to an asyn-

chronous design are two-fold. First, it can inform an available

client to train whenever it is idle, as illustrated in Figure 1b.

As such, fast clients do not have to wait for stragglers to

finish their tasks. Second, the server can conduct model ag-

gregation as soon as a local update becomes available. Thus,

the pace at which the global model evolves can be lifted by

fast clients, instead of being constrained by stragglers.

Client 
Manager

Executor

Coordinator

Configuration

1○

Pisces

Server

Client Pool

Orchestration3○

Registration2○

FL drivers

Background 
Communication

4○

Figure 3: Pisces architecture.

Given the above degrees of freedom, Pisces needs to ad-

dress the following practical issues in order to unleash the

performance potential in asynchronous training.

(1) How many clients are selected to run concurrently? If

there is an available quota for running clients at some

point, how to decide whether it is time to launch local

training, and at which client (§4)?

(2) When receiving local updates from clients, how to

decide whether to aggregate available updates right

away or wait for more updates to arrive (§5)?

Architecture. Pisces is a practical and efficient FL frame-

work with new implementations on both the server and

clients. Figure 3 depicts how Pisces fits in the existing FL

workflow. 1○ Configuration: given a training plan, the client

manager configures itself and waits for clients to arrive. 2○
Registration: upon a client’s arrival, the client manager reg-

isters its meta-information (e.g., dataset size) and starts to

monitor its runtime metrics (e.g., response latency). 3○ Or-
chestration: during training, the coordinator iterates over a
control loop that interacts with both the client manager and

the executor. 4○ Background Communication: in the back-

ground, the executor handles the server-client communi-

cation, maintains a buffer that stores non-aggregated local

updates, and validates the model with hold-out datasets.

We further zoom in on the coordinator’s control loop, as

shown in Algorithm 1. At each iteration, the coordinator

first asks the client manager whether to perform model ag-

gregation (Line 3). If necessary, it delegates the task to the

executor for completion. The coordinator then consults the

client manager on whether any idle client needs to be se-

lected (Line 7). The client manager will either reply no, or

yes with a plan to instruct the executor on whom to select.

On meeting a certain termination condition, e.g., reaching a

target accuracy, the control loop will stop and output a final

trained model (Line 5).
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1 Function AsynchronousTraining()
/* Repeat every time window. */

2 while True do
/* Perform model aggregation if necessary. */

3 if ManagerToAggregate() then
4 ExecutorAggregate()

/* Exit the loop if applicable. */

5 if ExecutorToTerminate() then
6 break

/* Select participants if necessary. */

7 if ManagerToSelect() then
8 clients = ManagerSelectClients()

9 ExecutorStartTraining(clients)

Algorithm 1: Coordinator’s control loop in Pisces.

In the subsequent sections, we delve into Pisces’s algorith-

mic principles on how to turn the above design knobs for

efficient asynchronous training.

4 PARTICIPANT SELECTION
In this section, we consolidate the need for controlling the

maximum number of clients allowed to run concurrently (i.e.,

concurrency) (§4.1), and then introduce how Pisces selects

clients for fully utilizing each quota for running clients (§4.2).

4.1 Controlled Concurrency
Idle clients can be invoked at any time in asynchronous FL.

Many existing works continuously invoke all clients for max-

imizing the speedup [10, 57, 68]. Having all clients training

concurrently, however, can saturate the server’s memory

capacity and network bandwidth. Even with abundant re-

sources, it remains a question whether excessive resource

usage can translate into a proportional runtime reduction.

There exists a work that evaluates the runtime performance

of FL training where the maximum allowed concurrency is

controlled below a certain portion of the population [50].

However, it neither characterizes the relationship between

the runtime gain and resource cost in asynchronous FL, nor

does it suggest how to fully utilize each quota for running

clients given a particular concurrency limit.

Resource cost v.s. runtime gain. To empirically examine

the relationship between resource cost and runtime gain in

asynchronous FL, we evaluate FedBuff, the state-of-the-art

asynchronous FL approach deployed in Facebook AI [24],

in the same 20-client testbed as mentioned in Section 2.2.

Essentially, FedBuff selects clients randomly and employs

buffered aggregation where model aggregation is conducted

when the number of received local updates exceeds a certain

predefined threshold (more details in Section 5.1). Here we
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Figure 4: Scaling up the concurrency leads to diminish-
ing gain in run time with escalating network usage.

consistently set the aggregation threshold to be 40% of the

concurrency limit across all cases.

In Figure 4, the time-to-accuracy/-perplexity reduces as

themaximum allowed concurrency grows (dark lines), though

at a diminishing speed. After a turning point (around 15

clients), the time-to-accuracy instead starts to inflate. On the

other hand, we constantly observe a superlinear increase in
the accumulated number of clients’ updates when scaling up

the maximum concurrency (light lines). Such a growing pat-

tern indicates an escalating burden on network bandwidth

and limitations in scalability. Thus, there exists a tradeoff

between resource cost and runtime gain, and it is plausible

to limit the concurrency to a small portion of the population.

4.2 Utility Profiling
While directly limiting the concurrency can improve re-

source efficiency, we take a step further by considering how

to select clients for fully utilizing each concurrency quota.

Does random selection suffice? As stragglers can be tol-

erated, it first raises the question of whether random selec-

tion suffices for asynchronous FL before resorting to more

complex methods. Our answer is no, as clients widely exhibit

heterogeneous data distributions [22]. Even if clients have

the same speed, it is still desirable to focus on clients with

the most utility to improve global model quality for faster

convergence. We empirically show the inferiority of random

selection in Section 8.2.

Which clients to prioritize? We have left off the question

of how to identify clients with the most utility to improve

the global model. Starting from the state-of-the-art solution

established for synchronous FL (§2.2), we need to address

the following concerns arising from asynchronous FL:

• Given lifted tolerance for stragglers, do they still have

to be strictly penalized in the chance of being selected?
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• Given new training dynamics, does clients’ data quality

influence the global model in the same way?

Both of our answers are no. First, no individual client can

impede the pace at which the global model updates. With the

removal of synchronization barriers, there is no need to wait

for stragglers to finish. Also, strictly penalizing stragglers

risks precluding informative clients given the coupled nature

of speeds and data quality (§2.2). Thus, strictly penalizing
stragglers can do more harm than good.

On the other hand, a client’s speed still affects its utility to

improve the global model in an indirect way. The longer it

takes a client to train, the more changes that the global model

that it bases on is likely to undergo, because of other clients’

contributions in the interim. In the literature, it is dubbed as

staleness the lag between the version of the current global

model and that of the locally used one. Empirical studies

show that as the staleness of an update grows, the accuracy

gained from incorporating that update will diminish [12, 21,

68]. Hence, it is not helpful to select clients with high-quality
data but also a large chance to produce stale updates.

Combining the two insights, we formulate the utility of a

client by respecting the roles that its data quality and stale-

ness play in improving the global model:

𝑈 𝑃𝑖𝑠𝑐𝑒𝑠
𝑖 = |𝐵𝑖 |

√
1

|𝐵𝑖 |
∑
𝑘∈𝐵𝑖

𝐿𝑜𝑠𝑠 (𝑘)2︸                        ︷︷                        ︸
𝐷𝑎𝑡𝑎 𝑞𝑢𝑎𝑙𝑖𝑡𝑦

× 1

(𝜏𝑖 + 1)𝛽︸    ︷︷    ︸
𝑆𝑡𝑎𝑙𝑒𝑛𝑒𝑠𝑠

, (2)

where 𝐿𝑜𝑠𝑠 (𝑘) is the training loss of sample 𝑘 from the client

𝑖’s local dataset 𝐵𝑖 , 𝜏𝑖 ≥ 0 is the estimated staleness of the

client’s updates and 𝛽 > 0 is the staleness penalty factor.

Based on the profiled utilities, Pisces sorts clients and selects

the clients with the highest utilities to train.

Robustness against training loss outliers. The first term

of Equation (2) stems from Oort’s utility formula, i.e., Equa-

tion (1), that approximates the ML principle of importance
sampling [29, 34] to sketch a client’s data quality. We do

not reinvent the formulation as its effectiveness does not

vary across synchronization modes. Moreover, it features

negligible computation overhead and privacy leakage.

Beyond the formulation, however, we need to tackle a ro-
bustness challenge unique to asynchronous FL. By definition,

clients with high training loss are taken as possessing impor-

tant data. In practice, a high loss could also result from the

client’s corrupted data or malicious manipulation. As a quick
fix, Oort mitigates such cases by (i) adding randomness by

probabilistic sampling and (ii) blacklisting clients who have

been selected over a threshold of times.

Unfortunately, both strategies do not generalize to asyn-

chronous FL. First, the server performs selection way more

101 102

Client Latency (s)

0

10

20

30

U
pd

at
e 

St
al

en
es

s

(a) FEMNIST (Image)

102

Client Latency (s)

0

5

10

U
pd

at
e 

St
al

en
es

s

(b) StackOverflow (LM)

Figure 5: Clients’ staleness varies slightly throughout
the training regardless of their execution time.

frequently, eliminating the benefits of probabilistic sampling.

Suppose that asynchronous FL selects clients every 5 seconds

and synchronous FL every 60 seconds. For a client with a

probability of 0.01 to be selected in an attempt, the probability

that it must be selected within five minutes is 1−(1−0.01)5 ≈
5% in synchronous FL, while being 1 − (1 − 0.01)60 ≈ 45% in

asynchronous FL. Further, as a client is generally involved

more frequently, its participation can quickly reach the black-

list threshold. The client pool for selection can thus be ex-

hausted in the late stage of training, hindering convergence.

Given the intuition that (i) the loss values of benign clients

evolve in roughly the same direction, while (ii) those result-

ing from corrupted or malicious clients tend to be outliers
consistently, we propose to blacklist clients whose losses

have been outliers over a threshold of time. Initially, each

client is given 𝑟 reliability credits. For a client update which
uses the global model of version𝑤𝑡 , Pisces pools the received

client updates that are trained from similar initial versions

of the global model, namely {𝑤𝑡−𝑘 ,𝑤𝑡−𝑘+1, . . . ,𝑤𝑡 } for some

𝑘 > 0, and runs DBSCAN [15] to cluster their associated
losses. Each time a client’s loss value is identified as an out-

lier, its credit gets deducted by one. A client will be removed

from the client pool when it runs out of reliability credit.

As validated, Pisces can reduce anomalous updates while

avoiding blindly blacklisting benign clients (§8.3).

Staleness-aware discounting. As the second term in Equa-

tion (2) shows, Pisces discounts a client’s utility based on its

estimated staleness of its local updates. We adopt the recip-

rocal of a polynomial function for realizing: 1) functionality:
given the same data quality, the client with larger staleness

should get a larger discount for being selected less likely;

and 2) numerical stability: the speed at which the discount

inflates should decrease as the staleness goes infinite.

It remains a question of how to estimate the actual stale-

ness 𝜏𝑖 in practice. By definition, its exact value is unknown

until the client returns its update, which happens after the
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selection. While it may be precisely inferred through elabo-

rate simulation of the federation, doing so is impractical due

to the need for accurate knowledge of clients’ speeds. Given

that Equation (2) is not designed to work with an accurate

estimation on 𝜏𝑖 , we advocate approximating it with historical
records. Specifically, Pisces lets 𝜏𝑖 be the moving average of

the most recent 𝑘 actual values 𝜏𝑖,𝑡−𝑘+1, 𝜏𝑖,𝑡−𝑘+2, . . . 𝜏𝑖,𝑡 , i.e.,

𝜏𝑖 =
1

𝑘

𝑡∑
𝑗=𝑡−𝑘+1

𝜏𝑖, 𝑗 . (3)

The intuition behind the approximation is that the stale-

ness of a client’s updates is usually stable over time, given the

stability of (1) clients’ execution times and (2) the frequency

of model aggregation. To exemplify, we study the staleness

behaviors associated with the experiments mentioned in Sec-

tion 4.1. We use 15 as the concurrency limit without loss of

generality. As depicted in Figure 5, during the training, the

staleness of each client slightly fluctuates around the median,

with the maximum range of individual values being 6 and 3

for FEMNIST and StackOverflow, respectively.

5 MODEL AGGREGATION
While Pisces’s optimizations in participant selection can re-

duce stale computation, it cannot thoroughly prevent its

occurrences. As for stale updates already generated, we fur-

ther optimize model aggregation to prevent the global model

from being arbitrarily impaired. In this section, we first start

with the goal of bounded staleness and discuss the limita-

tions of existing fixes (§5.1). We then elaborate on Pisces’s

principles on performing adaptive aggregation pace control

for efficiently bounding clients’ staleness (§5.2).

5.1 Bounded Staleness
As mentioned in Section 4.2, local updates with larger stale-

ness empirically bring less gain in model convergence. This

fact has a theoretical ground as stated below, consolidating

the first-order goal of bounding staleness in aggregation.

Why desire bounded staleness? The mainstream way to

derive a convergence guarantee for asynchronous FL is based

on the perturbed iterate framework [47, 50]. In addition to

the assumptions that are commonly made in synchronous

FL, it also requires the following assumption to hold:

Assumption 1. (Bounded Staleness) For all clients 𝑖 ∈ [𝑁 ]
and for each Pisces server’s loop step, the staleness 𝜏𝑖 between
the model version in which client 𝑖 uses to start local training,
and the model version in which the respective update is used
to modify the global model is not larger than 𝜏max.

We here sketch the intuition on how bounded staleness

helps convergence. By limiting the staleness of each client’s
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Figure 6: Two methods for steering aggregation pace.

updates all the time, we can limit the model divergence be-
tween any version of the global model 𝑤𝑡 and the initial

model that any corresponding contributor of𝑤𝑡 uses. This

implies that the contributors’ gradients do not deviate much

from each other. Consequently, each model aggregation at-

tempt does take an effective step towards the training objec-

tive, and the training can thus terminate with finite times of

aggregation. We provide more details in Section 6.1.

Does buffered aggregation suffice? To control clients’

staleness, the state-of-the-art asynchronous FL design, i.e.,

FedBuff (mentioned in Section 4.1), adopts buffered aggre-
gation (BA). The server uses a buffer to store local updates
and only aggregates when the buffer size reaches a certain

aggregation goal 𝐾 > 1, as illustrated in Figure 6a.

Still, due to the lack of explicit control, the maximum

staleness across clients in BA can go unbounded, to which

extent depends on the heterogeneity degree of clients’ speeds.

For example, for the experiments reported by Figure 5, the

fastest client is 90× faster than the slowest in FEMNIST

and 7.2× in StackOverflow. Thus, despite using the same

aggregation goal (𝐾 = 6), the maximum staleness values

differ vastly (33 in FEMNIST and 11 in StackOverflow). This

implies the need for manually tuning the aggregation goal

across different federation environments and learning tasks,

which can be too expensive or even prohibited.

5.2 Adaptive Pace Control
To generally enforce a staleness bound, we develop an adap-

tive strategy for steering the pace of model aggregation.
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Input: Running clients 𝑅, target staleness bound 𝑏 > 0, last

aggregation time 𝑡𝜏 𝑗−1 , current time 𝑇𝑙 , clients’

profiled latencies {𝐿𝑖 }𝑖∈[𝑛]
Output: Aggregation decision for the loop step 𝑙

1 Function ManagerToAggregate()
/* Set the aggregation interval proportionate to the

profiled latency of the slowest running client. */

2 𝐿𝑚𝑎𝑥 = max𝑖∈𝑅 𝐿𝑖
3 𝐼 = 𝐿𝑚𝑎𝑥/𝑏

/* Aggregate if the interval currently ends. */

4 return 𝑇𝑙 − 𝑡𝜏 𝑗−1 > 𝐼

Algorithm 2: Pisces’s adaptive aggregation pace control.

How to be adaptive to complex dynamics? In general,

the distribution of the staleness values across clients is deter-

mined by the interplay between (1) the algorithms used (for

both selection and aggregation), and (2) the dynamic environ-

ment (e.g., clients’ speeds or data quality). While accounting

for the whole population is overwhelming, we can reduce

the problem to a narrowly scoped one that only considers a

single client. Our insight is that to enforce a staleness bound

for all clients throughout the training, it suffices to bound

the staleness of the slowest running client for each time unit.

We thus propose to keep track of the running client with the

largest profiled latency and adjust the aggregation interval,
i.e., the time between two consecutive model aggregations,

in a way that the aggregation pace can match the slowest

client’s speed.

How to adjust the aggregation interval? We further de-

velop the idea with a concrete example as shown in Figure 6b.

We focus on the time period where Client 𝐴 performs local

training (highlighted with grey shadow). During this pro-

cess, 𝐴 is consistently the slowest running client. Thus, by

ensuring that𝑚 ≤ 2 model updates take place during 𝐴’s

training, we can guarantee the same staleness bound for any

other clients running within this period.

It only leaves off the question of when should these 𝑚

aggregations happen. Our intuition is that, arranging them

evenly in terms of time can balance the numbers of contrib-

utors across different aggregation attempts in expectation,

helping the global model evolve smoothly. Also, a (nearly)

uniform distribution of the server’s aggregation workload

can sustain better scalability.

Latency-aware aggregation interval. By generalizing

the above idea to real deployments where the identity of

the slowest running client changes over time, we obtain

Pisces’s principles on steering the model aggregation pace.

In essence, Pisces periodically examines the necessity of ag-

gregation in the control loop (§3). As outlined in Algorithm 2,

for a loop step 𝑙 that begins at time 𝑇𝑙 , Pisces first fetches

the profiled latency 𝐿𝑚𝑎𝑥 of the slowest client that is cur-

rently running. It then determines the aggregation interval 𝐼

suitable to bound the client’s staleness based on the above

intuition. Finally, it computes the elapsed time 𝑒 = 𝑇𝑙 − 𝑡𝜏 𝑗−1
since the last model aggregation happened. Only when 𝑒

is larger than the interval 𝐼 will Pisces suggest performing

model aggregation in this step. In practice, clients’ latencies

can be profiled with historical records. As Section 6.1 shows,

assuming accurate latency predictions, Algorithm 2 helps

achieve bounded staleness.

6 THEORETICAL ANALYSIS
In this section, we first prove that Pisces guarantees bounded

staleness and then present Pisces’s convergence guarantee

(§6.1). Next, we analyze the complexity of computation, com-

munication, and storage of Pisces (§6.2).

6.1 Convergence Guarantee
Notation. We let 𝑇𝑙 denote the start time of a loop step 𝑙 ,

𝐼𝑙 denote the aggregation interval generated by Algorithm 2

at step 𝑙 , 𝑛 denote the total number of clients, 𝑏 denote the

target staleness bound used by Pisces, ∇𝐹𝑖 (𝑤) denote the
gradient of model𝑤 with respect to the loss of client 𝑖’s data,

𝑓 (𝑤) = 1

𝑛

∑𝑛
𝑖=1 𝑝𝑖𝐹𝑖 (𝑤) denote the global learning objective

with 𝑝𝑖 > 0 weighting each client’s contribution, 𝑓 ∗ denote
the optimumof 𝑓 (𝑤),𝑔𝑖 (𝑤 ; 𝜉𝑖 ) denote the stochastic gradient
on client 𝑖 with randomness 𝜉𝑖 , and 𝑄 denote the number of

steps in local SGD.

Why does Pisces achieve bounded staleness? We first

state a useful lemma that globally holds for each loop step.

Lemma 1. For any loop step 𝑙 where model aggregation
happens, there must be nomodel aggregation happening during
the time range [𝑇𝑙 − 𝐼𝑙 ,𝑇𝑙 ).

Proof. Assume that model aggregation takes place once

at time 𝑡 ∈ [𝑇𝑙 − 𝐼𝑙 ,𝑇𝑙 ), the elapsed time since this aggre-

gation starts is then 𝑇𝑙 − 𝑡 ≤ 𝐼𝑙 . However, by the design of

Algorithm 2, there should be no aggregation in step 𝑙 , which

leads to a contradiction. □

We are then able to derive the bounded staleness property.

Theorem 1. Executing Algorithm 2 for all loop steps 𝑙 =
1, · · · , 𝐿, the maximum number of model aggregations hap-
pening during any training process of any client 𝑖 ∈ [𝑛] is no
more than 𝑏, if the profiled latencies {𝐿𝑖 }𝑖∈[𝑛] are accurate.

Proof. Consider a training process of client 𝑖 that lasts

for 𝐿𝑖 . In the interim, assume that there are𝑚 ∈ N model
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aggregations performed by the server, each of which happens

in the loop step 𝑙𝑘 where 𝑘 ∈ [1,𝑚].
Now, applying Lemma 1, the duration between the 1st and

the𝑚-th aggregation has a lower bound 𝑇𝑙𝑚 −𝑇𝑙1 >
∑𝑚
𝑗=2 𝐼𝑙 𝑗 .

By definition, 𝐼𝑙 𝑗 = 𝐿𝑚𝑎𝑥,𝑙 𝑗 /𝑏 where 𝐿𝑚𝑎𝑥,𝑙 𝑗 is the end-to-end

latency of the slowest client running at step 𝑙 𝑗 . Given that

𝐿𝑚𝑎𝑥,𝑙 𝑗 ≥ 𝐿𝑖 , we further have 𝑇𝑙𝑚 −𝑇𝑙1 > (𝑚 − 1)𝐿𝑖/𝑏.
Meanwhile, we also have 𝐿𝑖 ≥ 𝑇𝑙𝑚 −𝑇𝑙1 , as the two aggre-

gations all happen in this training process. Combining the

two inequalities yields 1 > (𝑚 − 1)/𝑏, i.e.,𝑚 < 𝑏. □

What is the convergence guarantee? We additionally

make the following assumptions which are commonly made

in analyzing FL algorithms [45, 56, 61, 71].

Assumption 2. (Unbiasedness of client stochastic gradient)
E𝜁𝑖 [𝑔𝑖 (𝑤 ; 𝜁𝑖 )] = ∇𝐹𝑖 (𝑤).

Assumption 3. (Bounded local and global variance) for
all clients 𝑖 ∈ [1, 𝑛], E𝜁𝑖 |𝑖 [∥𝑔𝑖 (𝑤 ; 𝜁𝑖 ) − ∇𝐹𝑖 (𝑤)∥2] ≤ 𝜎2ℓ , and
1

𝑛

∑𝑛
𝑖=1 ∥∇𝐹𝑖 (𝑤) − ∇𝑓 (𝑤)∥2 ≤ 𝜎2𝑔 .

Assumption 4. (Bounded gradient) ∥∇𝐹𝑖 ∥2 ≤ 𝐺 , 𝑖 ∈ [1, 𝑛].

Assumption 5. (Lipschitz gradient) for all client 𝑖 ∈ [1, 𝑛],
the gradient is𝐿-smooth ∥∇𝐹𝑖 (𝑤) − ∇𝐹𝑖 (𝑤 ′)∥2 ≤ 𝐿 ∥𝑤 −𝑤 ′∥2 .

Given the five assumptions, by substituting the use of

maximum delay 𝜏𝑚𝑎𝑥,𝐾 with our enforced staleness bound

𝑏 and using a constant server learning rate 𝜂𝑔 = 1 (as we

execute Federated Averaging [48]) in [50]’s proof, we can

derive the convergence guarantee for Pisces as follows.

Theorem 2. Let 𝜂 (𝑞)
ℓ

be the local learning rate of client
SGD in the 𝑞-th step, and define 𝛼 (𝑄) := ∑𝑄−1

𝑞=0
𝜂
(𝑞)
ℓ

, 𝛽 (𝑄) :=∑𝑄−1
𝑞=0

(𝜂 (𝑞)
ℓ

)2. Choosing 𝜂 (𝑞)
ℓ
𝑄 ≤ 1

𝐿
for all local steps 𝑞 =

0, · · · , 𝑄 − 1, the global model iterates in Pisces achieves the
following ergodic convergence rate

1

𝑇

𝑇−1∑
𝑡=0

∇𝑓 (𝑤𝑡 )2 ≤ 2

(
𝑓 (𝑤0) − 𝑓 ∗

)
𝛼 (𝑄)𝑇 + 𝐿

2

𝛽 (𝑄)
𝛼 (𝑄)𝜎

2

ℓ

+3𝐿2𝑄𝛽 (𝑄)
(
𝑏2 + 1

) (
𝜎2ℓ + 𝜎2𝑔 +𝐺

)
.

(4)

Theorem 2 derives an upper bound for the ergodic norm-

squared of the gradient, which diminishes at a rate slightly

slower than 𝑂 (1/𝑇 ) as the number of global aggregations

𝑇 grows. Thus, Pisces can converge towards a first-order

stationary point in non-convex stochastic optimization.

6.2 Performance Analysis
We next analyze the additional cost that Pisces imposes on an

FL workflow. All calculations below assume a single server

and𝑛 clients in total. We ignore clients’ cost as Pisces induces

negligible overhead to each local training process,
2
and focus

on each loop step performed by the server.

Computation cost: 𝑂 (𝑛2). The computation cost can be

broken down as: (1) running Algorithm 2 to decide whether

to aggregate, which is 𝑂 (1), (2) updating the utility score

for clients who are involved in model aggregation, if any,

which is dominated by 𝑂 (1) attempts of detecting training

loss outliers with DBSCAN and thus takes 𝑂 (𝑛2) time, and

(3) selecting clients to train based on the rankings of their

utility scores, which is 𝑂 (𝑛 log𝑛).
Communication cost: 𝑂 (𝑛). The server additionally col-

lects the aggregate training loss from each client who reports

her local updates, which costs 𝑂 (𝑛) in total.

Storage cost: 𝑂 (𝑛2). The storage cost stems from (1) caching

clients’ profiled latencies, estimated staleness values, and

computed utility scores, which is𝑂 (𝑛), (2) ranking clients by
their utility scores, which is 𝑂 (𝑛), and (3) running DBSCAN

to detect training loss outliers, which is 𝑂 (𝑛2).

7 IMPLEMENTATION
We implement Pisces atop Plato [64], an open-source frame-

work for scalable FL research, with 2.1k lines of code. Plato

abstracts away the underlying ML driver with handy APIs,

with which we can seamlessly port Pisces to infrastructures

including PyTorch [53], Tensorflow [2], and MindSpore [49].

On the other hand, at the time of engineering, Plato did not

support asynchronous FL and participant selection. Thus,

we first implement the coordinator’s control loop and client

manager for enhanced functionality. For fairness of model

testing overhead across different synchronization modes, we

take the testing logic from the main loop to a concurrent

background process. Further, to emulate arbitrary distribu-

tions of clients’ speeds given finite hardware specifications,

we instrument Plato to simulate client latencies by control-

ling exactly when a received local update is "visible" to the

FL protocol. This enables us to control clients’ latencies in

a fine-grained manner, as shown in Section 8.1. The entire

codebase of Pisces is open-sourced at [1].

8 EVALUATION
We evaluate Pisces’s effectiveness in various FL training

tasks. The highlights of our evaluation are listed as follows.

2
The training loss of each sample is inherently available in ML training

processes. Also, both the cost of aggregating training losses and that of

reporting the aggregate do not grow with more clients.
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(1) Pisces outperforms Oort and FedBuff by 1.2−2.0×
in time-to-accuracy performance. It gains high train-

ing efficiency by automating participant selection and

model aggregation in a principled way (§8.2).

(2) Pisces is superior to its counterparts over different

participation scales and degrees of systemhetero-
geneity across clients. Its efficiency is also shown to be

insensitive to choice of the hyperparameters (§8.3).

8.1 Methodology
Datasets and models. We run two categories of applica-

tions with four real-world datasets of diverse scales.

• Image Classification: the CIFAR-10 dataset [37] with
60k colored images in 10 classes, theMNIST dataset [13]

with 60k greyscale images in 10 classes, and a larger

dataset, FEMNIST [7], with 805k greyscale images in

62 categories collected from 3.5k data owners. We train

LeNet5 [40] to classify the images in MNIST and FEM-

NIST and use ResNet-18 [20] for CIFAR-10.

• Language Modeling: a large-scale StackOverflow [30]

dataset contributed by 0.3 million clients. We train

Albert [39] over it for next-word prediction.

Experimental Setup. We launch anAWSEC2 c5.4xlarge
instance (16 vCPUs and 32 GB memory) for the server. We

use another 20 c5.4xlarge instances to emulate 200 clients,

where each instance is used to run 10 clients for high uti-

lization without resource contention. As each instance has

the same resource configuration, all clients are created with

uniform processing speed. To simulate system heterogene-

ity, we configure their processing latency to follow the Zipf

distribution [26, 41, 63] with 𝑎 = 1.2 using the execution

barriers mentioned in §7, i.e., the end-to-end latency of the

𝑖-th slowest client is proportional to 𝑖−𝑎 . This models a prac-

tical scenario where most clients are fast and only a few are

stragglers. To additionally introduce data heterogeneity, we

resort to either of the two solutions:

• Synthetic Datasets. For datasets that are used in con-

ventional ML (MNIST and CIFAR-10), we apply latent

Dirichlet allocation (LDA) over data labels for each

client as in the literature [3, 5, 23, 56]. The concen-

tration parameters are all set to be 1.0 such that label

distributions are highly skewed across clients.

• Realistic Datasets. For datasets collected in real dis-

tributed scenarios (FEMNIST and StackOverflow), as

they have been partitioned by the original data owners,

we directly allocate one partition to a client to preserve

the native non-IID properties.

Note that data quality and system speed are configured

independently here, instead of inversely as in Section 2.2.

Table 1: Summary of the hyperparameters.

Parameters MNIST FEMNIST CIFAR-10 StackOverflow

Local epochs 5 5 1 2

Batch size 32 32 128 20

Learning rate 0.01 0.01 0.01 0.00008

Weight decay 0 0 0.0001 0.0001

Hyperparameters. The concurrency limit is 𝐶 = 20 (§4.1;

sharedwith Oort and FedBuff), and staleness penalty factor is

𝛽 = 0.5 (§4.2).The target staleness bound𝑏 (§5.2) always
equates𝐶 . We use SGDwith momentum set as 0.9 except for

StackOverflow where Adam [36] is used, unless otherwise

stated. Other configurations are listed at Table 1.

Baseline Algorithms. We evaluate Pisces against Oort

[38], the state-of-the-art optimized solution for synchronous

FL, and FedBuff [50], the cutting-edge asynchronous FL al-

gorithm. We use the default set of hyperparameters for Oort.

The aggregation goal of FedBuff is set to 20% of the concur-

rency limit, according to the authors’ suggestions.

Metrics. We primarily care about the elapsed time taken
to reach the target accuracy. To identify the source of per-

formance differences across algorithms, we also record the

number of involvements of each client and the number of
aggregations performed by the server. We further measure

the network footprint for assessing the practicality.

8.2 End-to-End Performance
We start with Pisces’ time-to-accuracy performance. We first

highlight its improvements over Oort and FedBuff. We next

break down the source of efficiency in Pisces. We further

access the network footprint of all algorithms.

Pisces improves time-to-accuracy. Table 2 summarizes

the speedups of Pisces over the baselines, where Pisces reaches

the target 1.2-2.0× faster on the three image classification

tasks. A consistent speedup of 1.9× can be observed in lan-

guage modeling. To understand the source of such improve-

ments, we first compare Pisces against Oort. As depicted in

Figure 7, the accumulated number of model aggregations in

Pisces is consistently larger than that in Oort (as is also the

case when FedBuff is compared to Oort). This confirms the

advantages of removing the synchronization barriers.

On the other hand, albeit with comparable update fre-

quency as in Pisces, FedBuff improves over Oort to a milder

degree. The key downside of FedBuff lies in its random selec-

tion method. As shown in Figure 8, Pisces prefers clients with

large datasets, while FedBuff shows barely any difference

in the interests of clients. Given the intuition that clients

with larger datasets have higher potential to improve the

global model, Pisces makes more efficient use of concurrency
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Table 2: Summary of Pisces’s improvements on the time-to-accuracy performance.

Task Dataset

Target

Accuracy
Model

Time-to-Accuracy

Pisces Oort [38] FedBuff [50]

Image

Classification

MNIST [13] 97.8% LeNet-5 [40] 6.2min 12.8min (2.0×) 7.6min (1.2×)
FEMNIST [7] 60.0% LeNet-5 8.9min 16.0min (1.8×) 12.6min (1.4×)
CIFAR-10 [37] 65.1% ResNet-18 [20] 24.5min 40.3min (1.6×) 26.5min (1.1×)

Language Modeling StackOverflow [30] 800 perplexity Albert [39] 25.0min 48.4min (1.9×) 47.2min (1.9×)
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Figure 7: Pisces performsmodel aggregationmore fre-
quently than Oort for being asynchronous.
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Figure 8: Pisces selects informative clients more fre-
quently than FedBuff with principled selection.

quotas than FedBuff does. Oort also differentiates clients by

data quality, though to a more moderate extent as it has to

reconcile for clients’ speeds.

Pisces exhibits stable convergence behaviors. Figure 9

further plots the learning curves of different protocols. First,

when reaching the corresponding time limit, Pisces achieves

0.2%, 2.9%, and 0.8% higher accuracy on MNIST, FEMNIST,

and CIFAR-10, respectively, and 23 lower perplexity on Stack-

Overflow, as compared to Oort. In other words, apart from

theoretical convergence guarantees on convergence, Pisces

Pisces Oort FedBuff

0 5 10 15
Time (min)

94

96

98

A
cc

ur
ac

y 
(%

)
(a) MNIST (Image)

0 16 32 48
Time (min)

50

60

70

A
cc

ur
ac

y 
(%

)

(b) FEMNIST (Image)

0.0 0.4 0.8 1.2
Time (hour)

40

60

80

A
cc

ur
ac

y 
(%

)

(c) CIFAR-10 (Image)

0.0 0.5 1.0 1.5
Time (hour)

0

2

4

Pe
rp

le
xi

ty
 (1
0
3
)

(d) StackOverflow (LM)

Figure 9: Elaboration on the convergence behaviors.

is also empirically shown to achieve comparative final model

quality with that in Oort (synchronous FL).

Moreover, in all evaluated cases, Pisces’ model quality

evolves more stably than that in Oort, especially in the mid-

dle and late stages. Pisces’ stability advantage probably stems

from the noise in local updates induced by moderately stale

computation, which is analogous to the one introduced to

avoid overfitting in traditional ML [60]. This conjecture com-

plies with the fact that FedBuff also exhibits stable conver-

gence, though sometimes to an inferior model quality (3.1%

and 0.4% lower accuracy than Pisces on FEMNIST and CIFAR-

10, respectively, and 24 higher perplexity on StackOverflow).

Pisces’ optimizations on participant selection are ef-
fective. To examine which part of Pisces’s participant se-

lection optimizations to accredit with, we break it down and

formulate two variants: (i) Pisces w/o slt.: we disable Pisces’s
selection strategies and sample randomly instead; (ii) Pisces
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Figure 10: Breakdown of participant selection designs.

w/o stale.: while we still select clients based on their data

quality, we ignore the impact that clients’ staleness has on

clients’ utilities, as if the second term in Equation (2) is con-

sistently set to be one. Figure 10 reports the comparison of

complete Pisces with these two variants.

As Pisces selects clients with high data quality and low

potential of inducing stale computation, it improves the time-

to-accuracy over Pisces w/o slt. by 1.1-2.7×. Further, the crite-
ria on data quality are more critical than those on staleness

dynamics, as Pisces is shown to enhance the performance of

Pisces w/o stale. less significantly (1.1-1.6×). Understandably,
with adaptive pace control in model aggregation, the pres-

sure of avoiding stale computation in participant selection is

partially released. Still, the combined considerations of the

two factors yield the best efficiency.

Pisces’s optimizations on aggregation adapt to various
settings. To understand the benefits of adaptive pace con-

trol, we also compare Pisces against another variant: (i)

Pisces w/o adp.: we disable Pisces’s adaptive pace control

and instead resort to buffered aggregation (§5.1) with var-

ious choices of the aggregation goal 𝐾 : 5%, 10% and 20%

of the concurrency limit 𝐶 , representing gradually decreas-

ing aggregation frequencies. As mentioned in Section 5.2,

clients’ staleness dynamics partly depend on the distribu-

tions of clients’ speeds. We thus also vary the skewness of

client latency distribution by using different 𝑎’s in the Zipf

distribution: 1.2 (moderate), 1.6 (high), and 2.0 (heavy).

As shown in Figure 11, Pisces improves over Pisces w/o
adp. by up to 1.4× both when 𝑎 = 1.6 and when 𝑎 = 2.0,

while it slightly slows down Pisces w/o adp. by at most 1.1×
when 𝑎 = 1.2. Further, across various degrees of client speed

heterogeneity, Pisces w/o adp. exhibits unstable efficiency as

sticking to any of 𝐾 does not yield the best performance for
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Figure 11: Aggregation adapts to speed heterogeneity.

Table 3: Total network footprint (GB) at the server end
when reaching the target accuracy.

Task MNIST FEMNIST CIFAR-10 StackOverflow

Pisces 0.162 0.346 108.501 77.668
Oort 0.197 0.406 96.742 119.229

FedBuff 0.199 0.474 114.631 193.466

all cases. Thus, buffered aggregation relies on the manual

tuning of 𝐾 to adapt to different tasks and environments,

while Pisces’s adaptive pace control is more preferable with

(1) a deterministic bound of clients’ staleness for theoretically

guaranteed efficiency and (2) one parameter 𝑏 which does

not require to tune.

Pisces is also competitive in network overhead. Apart

from the runtime, Table 3 further compares the server’s accu-

mulated network footprint (including sent and received pack-

ets) in different algorithms when the global model reaches

the target accuracy. Although Pisces performs participant

selection and model aggregation more frequently than Oort

per time unit (Figure 7), it achieves the target accuracy with

a slightly higher training time of 12% in CIFAR-10 or even

shortening it by 15-35% in the other tasks, thanks to its sig-

nificantly reduced time-to-accuracy (Table 2). On the other

hand, despite also improving the time-to-accuracy, FedBuff

consistently results in a higher network footprint than Oort

(by up to 60%). Thus, Pisces is still competitive in terms of

network overhead when compared to Oort and FedBuff.
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Figure 12: Pisces outperforms in various scales.
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Figure 13: Pisces is robust against corrupted clients.

8.3 Sensitivity Analysis
We also examine Pisces’s effectiveness across various envi-

ronments and configurations. All the results are based on

the same accuracy targets mentioned in Section 8.2.

Impact of participation scale. Besides a pool of 200 clients

with the concurrency limit being 20 (𝑁=200 with 𝐶=20 in

§8.2), we evaluate Pisces on two more scales of participa-

tion: 𝑁=100 with 𝐶=10, and 𝑁=400 with 𝐶=40. As shown

in Figure 12, as the number of clients scales up, Pisces out-

performs Oort (resp. FedBuff) in time-to-perplexity by 1.7×
(resp. 2.1×), 1.9× (resp. 1.9×), and 2.4× (resp. 1.6×) for 𝑁=100,

𝑁=200, and 𝑁=400, respectively. The key reason for Pisces’s

stable performance benefits is that its algorithmic designs

are agnostic to the population size. Further, Pisces enhances

its scalability by (1) enforcing a concurrency limit (§4.1), and

(2) adaptively balancing the aggregation workload (§5.2).

Impact of training loss outliers. To validate the robust-

ness to training loss outliers, we insert manual corruption

into the FEMNIST dataset. We follow the literature on adver-

sarial attacks [16, 38] to randomly flip all the labels of a subset

of clients. This leads to consistently higher losses from cor-

rupted clients than the majority, as exemplified in Figure 13a

where 5% clients are corrupted. We compare Pisces against

Pisces w/o rob., a variant of Pisces where anomalies are not
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Figure 14: Selection with various staleness penalties.
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Figure 15: Training FEMNISTwith various optimizers.

identified and precluded. As shown in Figure 13b, Pisces out-

performs it in the final accuracy for accurately precluding

outlier clients (§4.2) across various scales of corruption.

Impact of staleness penalty factor. We next examine

Pisces under different choices of the staleness penalty fac-

tor, 𝛽 , which is introduced to prevent stale computation in

participant selection (§4.2). We set 𝛽 = 0.2 and 𝛽 = 0.8 in

addition to the primary choice where 𝛽 = 0.5, where a large

𝛽 can be interpreted as a stronger motivation for Pisces to

avoid stale computation. As depicted in Figure 14, while dif-

ferent FL tasks may have different optimal choices of 𝛽 (e.g.,

around 0.5 for FEMNIST and 0.2 for StackOverflow), Pisces

still improves performance across different uses of 𝛽 .

Impact of optimizers. We next show the superior per-

formance of Pisces over its counterparts under different

choices of optimizers. In addition to SGD (with learning

curves shown in Figure 9b), we additionally train over FEM-

NIST with the Adam [36] and FedProx [43] optimizers. We

configure the penalty constant 𝜇 = 1.0 in FedProx following

the authors’ empirical suggestion [43]. In Figure 15, we ob-

serve that Pisces still improves convergence speed and final

model accuracy across different optimizers. We additionally

note that Adam displays a faster initial process than SGD and

FedProx but quickly fails to keep up the progress. This com-

plies with the observations made in the literature [58, 66],
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Figure 16: Training FEMNIST with various models.

which suggests that adaptive optimizers may not always

excel but falls out of the scope of this paper.

Impact of model architectures. In this experiment, we

investigate the effectiveness of Pisces when training diverse

models over FEMNIST. Beyond LeNet5 (0.06M parameters

with learning curves shown in Figure 9b), we also evaluate

two models of different scales: a customized CNN [4, 31] (1M

parameters) and the ResNet-18 [20] model (11M parameters).

As shown in Figure 16, Pisces’s superiority in the time-to-

accuracy performance is still noticeable across different uses

of models. Also, Pisces exhibits higher final model accuracy

and more stable convergence behaviors.

9 DISCUSSION AND FUTUREWORK
Generic FL training framework. The model of compu-

tation that Pisces’s architecture embodies, i.e., the three com-

ponents (Figure 3) and the interactions (Algorithm 1), can be

used to instantiate a wide range of FL protocols. Synchronous

FL also fits in this model by ensuring that (1) aggregation

starts when no client is running, and (2) selection starts right

after an aggregation. Given the expressiveness, we present it

as a generic FL training framework for helping FL developers

compare various protocols more clearly and fairly.

Privacy compliance. During a client’s participation in

Pisces, the possible sources of information leakage are two-

fold–the average training loss and local update that it reports

to the server. For the current release of the plaintext train-

ing loss, we do not enlarge the attack surface compared to

synchronous FL deployments [19, 38, 70], and thus can also

adopt the same techniques as theirs to enhance privacy.

To prevent the local update from leaking sensitive infor-

mation, Pisces can resort to differential privacy (DP) [14],

a rigorous measure of information disclosure about clients’

participation in FL. Traditional DP methods [4, 27, 31] re-

quire precise control over which clients to contribute to a

server update, which is not the case in asynchronous FL.

However, Pisces is compatible with DP-FTRL [32], a newly

emerged DP solution for privately releasing the prefix sum

of a data stream. While we focus on improving FL efficiency

and scalability, we plan to integrate Pisces with DP as future

work.

10 RELATEDWORK
To accommodate data heterogeneity in asynchronous FL,

many efforts propose to regularize local optimization for

controlling the deviations of local models from the global

one. For example, FedAsync [68] applies a surrogate objec-

tive to each client to regularize the L2-Norm between her

local model and the global one. ASO-Fed [10] considers a

similar design in the context of online FL learning. Pisces

complements these studies with informed participant selec-

tion and adaptive aggregation pace control.

To reduce stale computation, researchers study how to

steer the pace of aggregation. For example, both HySync

[57] and FedBuff [50] consider buffered aggregation (BA)

(§5.1). In particular, HySync assumes full client concurrency

and adapts the aggregation interval to avoid aggregating

too many updates at a time. FedBuff deals with controlled

concurrency and uses a fixed-size buffer for aggregation.

Moreover, Port [62] handles stale computation by forcing

stale clients to abort halfway and report their intermediate

local updates for aggressive aggregation. Unlike Pisces, these

systems neither guarantee bounded staleness in model ag-

gregation, nor do they devise participant selection strategies

for improved resource efficiency.

There also exist several proposals which adopt princi-

pled participant selection. For example, both FedAR [25]

and Chen’s work [11] select clients based on their resource

capacity and contributions to improving the global model.

Such work does not optimize model aggregation and thus

cannot reap the most benefits of asynchrony as Pisces does.

11 CONCLUSION
While the tradeoff between clients’ speeds and data qual-

ity is knotty to navigate in synchronous FL, resorting to

asynchronous FL requires retaining resource efficiency and

avoiding stale computation. In this paper, we present practi-

cal principles for automating participant selection and model

aggregation with Pisces. Compared to prior arts, Pisces fea-

tures noticeable speedups, robustness, and flexibility.
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