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Federated Learning (FL)

Enable distributed clients to
train a global model without
revealing their data.




Federated Learning (FL)

Server

For each round

1. Participant selection
2. Local training
3. Model aggregation

Clients Synchronous




The Straggler Problem in Sync FL
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The Straggler Problem in Sync FL

Time-to-accuracy
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Idle waiting: 33.2% to 57.2%



Fix Sync FL by Participant Selection

Existing work: Reconcile the demands for

Speed & Data quality

Client utility in Oortll = Speed x Data quality
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» Data quality

[1] Efficient federated learning via guided participant selection, OSDI'21



Fix Sync FL by Participant Selection

Inefficiency in a pathological case

Speed and data quality are
inversely correlated

» Data quality



Fix Sync FL by Participant Selection

Inefficiency in a pathological case
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Fix Sync FL by Participant Selection

Inefficiency in a pathological case

Intrinsically hard to navigate
In synchronous FL



Call for Async FL

Time-to-accuracy
s

- . - R
- I I
_ T ) I
I- | . —I

Participant selection
Freedom in {
Model aggregation
More tolerance for * Less tension between
slow clients data quality and speeds



Challenges in Async FL
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* Freedom in selection allows all clients to run concurrently
 High concurrency yields marginal gain




Challenges in Async FL
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#1: How should concurrency quotas be fully utilized?
* Freedom in selection allows all clients to run concurrently
 High concurrency yields marginal gain
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Challenges in Async FL
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#1: How should concurrency quotas be fully utilized?
* Freedom in selection solicits high concurrency
e High concurrency yields marginal gain
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Challenges in Async FL
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#1: How should concurrency quotas be fully utilized?
* Freedom in selection solicits high concurrency
e High concurrency yields marginal gain

#2: How should stale local updates be avoided?
e Freedom in aggregation solicits stale local updates
* Local updates with high staleness harms the convergence



Participant Selection

Prefer clients with high Challenges to tackle

Aggregate training lossl /
Concurrency

i mgs =
Vulnerable to corrupted  quota utilization

clients in async FL

#1: Useful clients tends to have large gradients/losses

Intuitions



Participant Selection

Prefer clients with high Challenges to tackle

Aggregate training losslll  — .
Concurrency

' quota utilization
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0 o 18 27 : Robustness :

Corrupted  ++-- Benign , against outliers !

Time (min)

#1: Useful clients tends to have large gradients/losses

. #2: Clients with corrupted data have outlier losses
Intuitions



Participant Selection

Prefer clients with high Challenges to tackle
Aggregate training lossl] — T y
. Concurrency :
Tendency for being stale : quota utilization ;
s T EEEEEREERRES ~e
l , Stale update
_ : avoidance -
Detect corrupted clients Nemmmmmmmmmm—-- U
by clustering Py =

#1: Useful clients tends to have large gradients/losses
#2: Clients with corrupted data have outlier losses

Intuitions . :
#3: Reduce stale computation in the first place



Participant Selection

Prefer clients with high Challenges to tackle

Aggregate training lossl] — e T T 4

. Concurrency :

Tendency for being stale : quota utilization ;

I s T EEEEEREERRES ~e

l l , Stale update

_ _ . avoidance -

Use the moving average Detect corrupted clients e !

to estimate by clustering prmmmmmmmmm=——- ~
Robustness

#1: Useful clients tends to have large gradients/losses
#2: Clients with corrupted data have outlier losses

#3: Reduce stale computation in the first place

#4: Clients’ staleness evolves steadily over time

Intuitions



Aggregation Pace Control

Convergence guarantee Challenges to tackle

+ ,

Goal: bound the staleness for all ' Stale Update
clients during the entire training : Avoidance

4 LLoLweicence

Subproblem: bound the staleness growth
for all clients in a certain time period

#1: Bounded staleness guarantees progress in each aggregation
Intuitions



Aggregation Pace Control

Convergence guarantee Challenges to tackle

+ ,

Goal: bound the staleness for all ' Stale Update
clients during the entire training : Avoidance

4 Lo Ledance

Subproblem: bound the staleness growth
for all clients in a certain time period

» Time

Client A _
Client B _ I —

#1: Bounded staleness guarantees progress in each aggregation
Intuitions  #2: Bounding the staleness growth for a client in a time period

guarantees the same for other faster clients



Aggregation Pace Control

Convergence guarantee Challenges to tackle

+ ,

Goal: bound the staleness for all ' Stale Update
clients during the entire training : Avoidance

4 LLoLweicence

Subproblem: bound the staleness growth
for all clients in a certain time period

4

Our algorithm: adjust the aggregation pace to the
currently running slowest client’s speed

#1: Bounded staleness guarantees progress in each aggregation
Intuitions  #2: Bounding the staleness growth for a client in a time period

guarantees the same for other faster clients



Aggregation Pace Control

Convergence guarantee Challenges to tackle

+ ,

Goal: bound the staleness for all ' Stale Update
clients during the entire training : Avoidance

* T mEEEEEERERERES ~
Flexibility to

i
Subproblem: bound the staleness growth : :
. environments

for all clients in a certain time period

4

Our algorithm: adjust the aggregation pace to the
currently running slowest client’s speed



Evaluation

Setup
 Testbed w/ 200 clients
= Concurrency limit is 10%
* Heterogeneity
l Extending - System: Zipf’s distribution
- Data: Realistic or synthetic
» Baselines
- Oort: SOTA Sync FL
- FedBuffsl: SOTA Async FL

Pisces

[2] Plato GitHub repo: https://github.com/TL-System/plato
[3] Federated learning with buffered asynchronous aggregation, AISTATS’22



https://github.com/TL-System/plato
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Time-to-Accuracy
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Traffic-to-Accuracy
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Pisces

An async FL framework for
o Efficiency
* Robustness

https://github.com/SamuelGong/Pisces e Flexibility
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selection : /

Model >< Robustness
against outliers

avoidance

Flexibility to
environments


https://github.com/SamuelGong/Pisces

