
Pisces:
Efficient Federated Learning via
Guided Asynchronous Training

Zhifeng Jiang, Wei Wang, Baochun Li, Bo Li

Federated Learning (FL)

Enable distributed clients to
train a global model without
revealing their data.

For each round

Server

Clients

1. Participant selection
2. Local training
3. Model aggregation

Federated Learning (FL)

Synchronous

The Straggler Problem in Sync FL

Time

C
lients

A round

Straggler

…

Time-to-accuracy

The Straggler Problem in Sync FL

Idle waiting: 33.2% to 57.2%

Existing work: Reconcile the demands for

Speed Data quality

Client utility in Oort[1] = Data qualitySpeed

Data quality
Speed

Client

Fix Sync FL by Participant Selection

[1] Efficient federated learning via guided participant selection, OSDI'21

&

×

Data quality
Speed

Client

Inefficiency in a pathological case

Speed and data quality are
inversely correlated

Fix Sync FL by Participant Selection

LeNet5@MNIST

Time to accuracy (min)
0 12.5 25 37.5 50

Random Oort

49.1
18

Inefficiency in a pathological case

Oort’s
focus

Data quality

Speed

Fix Sync FL by Participant Selection

Inefficiency in a pathological case

Intrinsically hard to navigate
in synchronous FL

Fix Sync FL by Participant Selection

Call for Async FL

…

Time-to-accuracy

More tolerance for
slow clients

Less tension between
data quality and speeds

Freedom in
Participant selection

Model aggregation

<latexit sha1_base64="X9ibpQkqePL5J9iJRN3uCTHPuaA=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4Ckkb1N6KXjxWsR/QhrLZbtqlm03Y3Qgl9B948aCIV/+RN/+Nm7aIWh8MPN6bYWZekHCmtON8Wiura+sbm4Wt4vbO7t5+6eCwpeJUEtokMY9lJ8CKciZoUzPNaSeRFEcBp+1gfJ377QcqFYvFvZ4k1I/wULCQEayNdNfL+qWyY9eqlarnoZzUqp6LXNuZ4ZuUYYFGv/TRG8QkjajQhGOluq6TaD/DUjPC6bTYSxVNMBnjIe0aKnBElZ/NLp2iU6MMUBhLU0KjmfpzIsORUpMoMJ0R1iP118vF/7xuqsNLP2MiSTUVZL4oTDnSMcrfRgMmKdF8YggmkplbERlhiYk24RRNCEsvL5NWxXbPbe/WK9evFnEU4BhO4AxcuIA63EADmkAghEd4hhdrbD1Zr9bbvHXFWswcwS9Y71/vCI2l</latexit>

{

• Freedom in selection allows all clients to run concurrently
• High concurrency yields marginal gain

Challenges in Async FL

…

• Freedom in selection allows all clients to run concurrently
• High concurrency yields marginal gain

Challenges in Async FL

#1: How should concurrency quotas be fully utilized?

…

Resource Efficiency

• Freedom in selection solicits high concurrency
• High concurrency yields marginal gain

Challenges in Async FL

#1: How should concurrency quotas be fully utilized?

• Freedom in aggregation solicits stale local updates

Client A
Time

Client B

Global model Version 1 Version 2 Version 3 Version 4

• Freedom in selection solicits high concurrency
• High concurrency yields marginal gain

Challenges in Async FL

#1: How should concurrency quotas be fully utilized?

• Freedom in aggregation solicits stale local updates
• Local updates with high staleness harms the convergence

#2: How should stale local updates be avoided?

Participant Selection

Concurrency
quota utilization

Challenges to tackle

Aggregate training loss[1]

#1: Useful clients tends to have large gradients/losses

Intuitions

Vulnerable to corrupted
clients in async FL

Prefer clients with high

Participant Selection

Concurrency
quota utilization

Robustness
against outliers

Prefer clients with high

Aggregate training loss[1]

Detect corrupted clients
by clustering

#1: Useful clients tends to have large gradients/losses
#2: Clients with corrupted data have outlier losses

Intuitions

Challenges to tackle

0 9 18 27
7Lme (mLn)

1.5

2.0

2.5

A
vg

. C
lLe

nt
 L

os
s

Corrupted Benign

Participant Selection

Concurrency
quota utilization

Stale update
avoidance

Robustness
against outliers

Prefer clients with high

Aggregate training loss[1]

Tendency for being stale

#1: Useful clients tends to have large gradients/losses
#2: Clients with corrupted data have outlier losses
#3: Reduce stale computation in the first placeIntuitions

Challenges to tackle

Detect corrupted clients
by clustering

Participant Selection

Concurrency
quota utilization

Stale update
avoidance

Robustness
against outliers

Prefer clients with high

Aggregate training loss[1]

Tendency for being stale

Use the moving average
to estimate

#1: Useful clients tends to have large gradients/losses
#2: Clients with corrupted data have outlier losses
#3: Reduce stale computation in the first place
#4: Clients’ staleness evolves steadily over time

Intuitions

Challenges to tackle

Detect corrupted clients
by clustering

Aggregation Pace Control
Challenges to tackle

Stale Update
Avoidance

Intuitions
#1: Bounded staleness guarantees progress in each aggregation

Goal: bound the staleness for all
clients during the entire training

Convergence guarantee

Subproblem: bound the staleness growth
for all clients in a certain time period

Aggregation Pace Control
Challenges to tackle

Stale Update
Avoidance

Intuitions
#1: Bounded staleness guarantees progress in each aggregation
#2: Bounding the staleness growth for a client in a time period
guarantees the same for other faster clients

Goal: bound the staleness for all
clients during the entire training

Convergence guarantee

Subproblem: bound the staleness growth
for all clients in a certain time period

Client A
Time

Client B

t1t0

Aggregation Pace Control
Challenges to tackle

Stale Update
Avoidance

Intuitions
#1: Bounded staleness guarantees progress in each aggregation
#2: Bounding the staleness growth for a client in a time period
guarantees the same for other faster clients

Goal: bound the staleness for all
clients during the entire training

Convergence guarantee

Subproblem: bound the staleness growth
for all clients in a certain time period

Our algorithm: adjust the aggregation pace to the
currently running slowest client’s speed

Aggregation Pace Control
Challenges to tackle

Stale Update
Avoidance

Goal: bound the staleness for all
clients during the entire training

Convergence guarantee

Subproblem: bound the staleness growth
for all clients in a certain time period

Our algorithm: adjust the aggregation pace to the
currently running slowest client’s speed

Flexibility to
environments

Evaluation

Setup
• Testbed w/ 200 clients

- Concurrency limit is 10%
• Heterogeneity

- System: Zipf’s distribution
- Data: Realistic or synthetic

• Baselines
- Oort: SOTA Sync FL
- FedBuff[3]: SOTA Async FL

Pisces

Plato[2]

Extending

[2] Plato GitHub repo: https://github.com/TL-System/plato
[3] Federated learning with buffered asynchronous aggregation, AISTATS’22

https://github.com/TL-System/plato

PisFes Oort FedBuff

0 5 10
Time (min)

94

96

98

A
cc

ur
ac

y
(%

)

MNIST@LeNet5

0 16 32
7ime (min)

50

60

70

A
cc

ur
ac

y
(%

)

FEMNIST@LeNet5

0.0 0.7 1.4
7ime (hour)

40

60

80

A
cc

ur
ac

y
(%

)

CIFAR10@ResNet18

0 20 40
TiPe (Pin)

0

2

4

Pe
rp

le
xi

ty
 (1
0
3
)

StackOverflow@Albert

2.0×

1.6×

1.8×

1.9×

Time-to-Accuracy

0 5 10
Time (min)

94

96

98

A
cc

ur
ac

y
(%

)

MNIST@LeNet5

0 16 32
7ime (min)

50

60

70

A
cc

ur
ac

y
(%

)

FEMNIST@LeNet5

0 20 40
TiPe (Pin)

0

2

4

Pe
rp

le
xi

ty
 (1
0
3
)

StackOverflow@Albert

0.0 0.7 1.4
7ime (hour)

40

60

80

A
cc

ur
ac

y
(%

)

CIFAR10@ResNet18

PisFes Oort FedBuff

1.2×

1.1×

1.6×

1.9×

Time-to-AccuracyPisFes Oort FedBuff

Traffic-to-Accuracy

0

50

100

150

200

CIFAR10 StackOverflow

193

115 119
97

78

109

Tr
affi

c
to

 A
cc

. (
G

B)

0.00

0.13

0.25

0.38

0.50

MNIST FEMNIST

0.47

0.20

0.41

0.20

0.35

0.16

Pisces Oort FedBuff

<latexit sha1_base64="X9ibpQkqePL5J9iJRN3uCTHPuaA=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4Ckkb1N6KXjxWsR/QhrLZbtqlm03Y3Qgl9B948aCIV/+RN/+Nm7aIWh8MPN6bYWZekHCmtON8Wiura+sbm4Wt4vbO7t5+6eCwpeJUEtokMY9lJ8CKciZoUzPNaSeRFEcBp+1gfJ377QcqFYvFvZ4k1I/wULCQEayNdNfL+qWyY9eqlarnoZzUqp6LXNuZ4ZuUYYFGv/TRG8QkjajQhGOluq6TaD/DUjPC6bTYSxVNMBnjIe0aKnBElZ/NLp2iU6MMUBhLU0KjmfpzIsORUpMoMJ0R1iP118vF/7xuqsNLP2MiSTUVZL4oTDnSMcrfRgMmKdF8YggmkplbERlhiYk24RRNCEsvL5NWxXbPbe/WK9evFnEU4BhO4AxcuIA63EADmkAghEd4hhdrbD1Zr9bbvHXFWswcwS9Y71/vCI2l</latexit>

{

Pisces
https://github.com/SamuelGong/Pisces

An async FL framework for
• Efficiency
• Robustness
• Flexibility

Concurrency
quota utilization

Stale update
avoidance

Robustness
against outliers

Flexibility to
environments

Efficiency in time
Participant
selection

Model
aggregation

Autom
ate

https://github.com/SamuelGong/Pisces

