Pisces

Efficient Federated Learning via
Guided Asynchronous Training

*

Ji

THE HONG KONG

UNIVERSITY OF SCIENCE
AND TECHNOLOGY

Zhifeng Jiang, Wei Wang, Baochun Li, Bo Li
a

UNIVERSITY OF

TO RONTO

Federated Learning (FL)

Enable distributed clients to
train a global model without
revealing their data.

Federated Learning (FL)

Server

For each round

1. Participant selection
2. Local training
3. Model aggregation

Clients Synchronous

The Straggler Problem in Sync FL

A round

| |
| svaggler |
I |
-

sjual|n

- Time

The Straggler Problem in Sync FL

Time-to-accuracy

P == =

Idle waiting: 33.2% to 57.2%

Fix Sync FL by Participant Selection

Existing work: Reconcile the demands for

Speed & Data quality

Client utility in Oortll = Speed x Data quality

paadsg

N @
‘ Client ' ‘ ‘

» Data quality

[1] Efficient federated learning via guided participant selection, OSDI'21

Fix Sync FL by Participant Selection

Inefficiency in a pathological case

Speed and data quality are
inversely correlated

» Data quality

Fix Sync FL by Participant Selection

Inefficiency in a pathological case

B Random B Oort

LeNets@MNIST

0 12.5 25 37.5 50
A

0 . .

o Oort’s Time to accuracy (min)

e focus

o _0
O
o 0%

» Data quality

Fix Sync FL by Participant Selection

Inefficiency in a pathological case

Intrinsically hard to navigate
In synchronous FL

Call for Async FL

Time-to-accuracy
s

- . - R
- I I
_ T) I
I- | . —I

Participant selection
Freedom in {
Model aggregation
More tolerance for * Less tension between
slow clients data quality and speeds

Challenges in Async FL

.
|
1
|
|
1
|
|
1
|
|
1
|
|
1
|
|
1
|
|
1
|
|
1
|
|
1
|
|
1
|
|
1
|
|
1
|
|
1
|
|
1
|
|
1
|
|
1
|
|
1
1

4

* Freedom in selection allows all clients to run concurrently
 High concurrency yields marginal gain

Challenges in Async FL

.
|
1
|
|
1
|
|
1
|
|
1
|
|
1
|
|
1
|
|
1
|
|
1
|
|
1
|
|
1
|
|
1
|
|
1
|
|
1
|
|
1
|
|
1
|
|
1
|
|
1
1

4

#1: How should concurrency quotas be fully utilized?
* Freedom in selection allows all clients to run concurrently
 High concurrency yields marginal gain

II
11

Resource Efficiency v/

Challenges in Async FL

.
[
|
1
1
|
1
1
|
1
1
|
1
1
|
1
1
|
1
1
|
1
1
|
1
1
|
1
1
|
1
1
|
1
1
|
1
1
|
1
1
|
1
1
|
1
1
|
1
1
|
1

4

#1: How should concurrency quotas be fully utilized?
* Freedom in selection solicits high concurrency
e High concurrency yields marginal gain

[
“
q
®
®
o
o
=
=
Q

Q
Q
ﬂ
@
Q
o
=
o
=
o
O
=
O,
7
7))
=
D
®
o
O
D
-
O
o
o
==
®
7

Client A
Client B

f_]
Global model Vm\m

Challenges in Async FL

.
[
|
1
1
|
1
1
|
1
1
|
1
1
|
1
1
|
1
1
|
1
1
|
1
1
|
1
1
|
1
1
|
1
1
|
1
1
|
1
1
|
1
1
|
1
1
|
1
1
|
1

4

#1: How should concurrency quotas be fully utilized?
* Freedom in selection solicits high concurrency
e High concurrency yields marginal gain

#2: How should stale local updates be avoided?
e Freedom in aggregation solicits stale local updates
* Local updates with high staleness harms the convergence

Participant Selection

Prefer clients with high Challenges to tackle

Aggregate training lossl /
Concurrency

i mgs =
Vulnerable to corrupted quota utilization

clients in async FL

#1: Useful clients tends to have large gradients/losses

Intuitions

Participant Selection

Prefer clients with high Challenges to tackle

Aggregate training losslll — .
Concurrency

' quota utilization

4 |

O ZO ™ @ e o Nasesssssssss=s==s

-

I

O

gb Detect corrupted clients

< . | | by clustering g EEEESSS===S ~
0 o 18 27 : Robustness :

Corrupted ++-- Benign , against outliers !

Time (min)

#1: Useful clients tends to have large gradients/losses

. #2: Clients with corrupted data have outlier losses
Intuitions

Participant Selection

Prefer clients with high Challenges to tackle
Aggregate training lossl] — T y
. Concurrency :
Tendency for being stale : quota utilization ;
s T EEEEEREERRES ~e
l , Stale update
_ : avoidance -
Detect corrupted clients Nemmmmmmmmmm—-- U
by clustering Py =

#1: Useful clients tends to have large gradients/losses
#2: Clients with corrupted data have outlier losses

Intuitions . :
#3: Reduce stale computation in the first place

Participant Selection

Prefer clients with high Challenges to tackle

Aggregate training lossl] — e T T 4

. Concurrency :

Tendency for being stale : quota utilization ;

I s T EEEEEREERRES ~e

l l , Stale update

_ _ . avoidance -

Use the moving average Detect corrupted clients e !

to estimate by clustering prmmmmmmmmm=——- ~
Robustness

#1: Useful clients tends to have large gradients/losses
#2: Clients with corrupted data have outlier losses

#3: Reduce stale computation in the first place

#4: Clients’ staleness evolves steadily over time

Intuitions

Aggregation Pace Control

Convergence guarantee Challenges to tackle

+ ,

Goal: bound the staleness for all ' Stale Update
clients during the entire training : Avoidance

4 LLoLweicence

Subproblem: bound the staleness growth
for all clients in a certain time period

#1: Bounded staleness guarantees progress in each aggregation
Intuitions

Aggregation Pace Control

Convergence guarantee Challenges to tackle

+ ,

Goal: bound the staleness for all ' Stale Update
clients during the entire training : Avoidance

4 Lo Ledance

Subproblem: bound the staleness growth
for all clients in a certain time period

» Time

Client A _
Client B _ I —

#1: Bounded staleness guarantees progress in each aggregation
Intuitions #2: Bounding the staleness growth for a client in a time period

guarantees the same for other faster clients

Aggregation Pace Control

Convergence guarantee Challenges to tackle

+ ,

Goal: bound the staleness for all ' Stale Update
clients during the entire training : Avoidance

4 LLoLweicence

Subproblem: bound the staleness growth
for all clients in a certain time period

4

Our algorithm: adjust the aggregation pace to the
currently running slowest client’s speed

#1: Bounded staleness guarantees progress in each aggregation
Intuitions #2: Bounding the staleness growth for a client in a time period

guarantees the same for other faster clients

Aggregation Pace Control

Convergence guarantee Challenges to tackle

+ ,

Goal: bound the staleness for all ' Stale Update
clients during the entire training : Avoidance

* T mEEEEEERERERES ~
Flexibility to

i
Subproblem: bound the staleness growth : :
. environments

for all clients in a certain time period

4

Our algorithm: adjust the aggregation pace to the
currently running slowest client’s speed

Evaluation

Setup
 Testbed w/ 200 clients
= Concurrency limit is 10%
* Heterogeneity
l Extending - System: Zipf’s distribution
- Data: Realistic or synthetic
» Baselines
- Oort: SOTA Sync FL
- FedBuffsl: SOTA Async FL

Pisces

[2] Plato GitHub repo: https://github.com/TL-System/plato
[3] Federated learning with buffered asynchronous aggregation, AISTATS’22

https://github.com/TL-System/plato

Time-to-Accuracy

Accuracy (%)

Accuracy (%)

2.0x

Pisces

08 — ;\3 70 —
:‘#. 3
96 4 . s 60 .
N S N
. MNIST@LeNet5 S . FEMNIST@LeNet5
94 4 - e I
- | | | |
0 5 10 0 16 RY
Time (min) Time (min)
1.6x o~ -
80 - | S 44 °
— .
et StackOverflow@Albert
60 -)
% 2-
40 - CIFAR10@ResNet18 % .
. ¥ < 1.9%
- | | O | |
0.0 0.7 1.4 0 20 40
Time (hour) Time (min)

Time-to-Accuracy
1.2x
SR B
> iy
2 96
= -
S . MNIST@LeNet5
< 94 :
- | |
0 5 10
Time (min)
1.1x
© 80 - o~
e
3 60 -
S
< 40 - CIFAR10@ResNet18
| |

0.0

0.7

1.4

Time (hour)

Accuracy (%)

Perplexity (10?)

----- Pisces Oort
""" FedBuff
70 -
60 -
50 -
| |
0
4 -
StackOverflow@Albert
7 -
1.9x%
0 | |
0 20 40
Time (min)

Traffic-to-Accuracy

" Pisces 2 Oort B FedBuff

0.50 200
m
S 0.38 150
S 0.25 100
o
ué 0.13 50
|_

0.00 0

MNIST FEMNIST CIFAR10 StackOverflow

ajewolny

Pisces

An async FL framework for
o Efficiency
* Robustness

https://github.com/SamuelGong/Pisces e Flexibility

Participant /
S
aggregation \

», Guota utilization "\

+=" -S- - I- - - -c-l ====- Efficiency in time

. tale update

selection : /

Model >< Robustness
against outliers

avoidance

Flexibility to
environments

https://github.com/SamuelGong/Pisces

