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Federated Learning (FL)

Enable distributed clients to 
train a global model without 
revealing their data.



For each round

Server

Clients

1. Participant selection
2. Local training
3. Model aggregation
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The Straggler Problem in Sync FL
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Time-to-accuracy

The Straggler Problem in Sync FL

Idle waiting: 33.2% to 57.2%



Existing work: Reconcile the demands for

Speed Data quality

Client utility in Oort[1] = Data qualitySpeed

Data quality
Speed

Client

Fix Sync FL by Participant Selection

[1] Efficient federated learning via guided participant selection, OSDI'21
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Data quality
Speed

Client

Inefficiency in a pathological case

Speed and data quality are 
inversely correlated

Fix Sync FL by Participant Selection
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Inefficiency in a pathological case
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Inefficiency in a pathological case

Intrinsically hard to navigate 
in synchronous FL

Fix Sync FL by Participant Selection



Call for Async FL

…

Time-to-accuracy

More tolerance for 
slow clients

Less tension between 
data quality and speeds

Freedom in
Participant selection

Model aggregation
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• Freedom in selection allows all clients to run concurrently
• High concurrency yields marginal gain

Challenges in Async FL
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• Freedom in selection allows all clients to run concurrently 
• High concurrency yields marginal gain

Challenges in Async FL

#1: How should concurrency quotas be fully utilized?

…

Resource Efficiency



• Freedom in selection solicits high concurrency 
• High concurrency yields marginal gain

Challenges in Async FL

#1: How should concurrency quotas be fully utilized?

• Freedom in aggregation solicits stale local updates

Client A
Time

Client B

Global model Version 1 Version 2 Version 3 Version 4



• Freedom in selection solicits high concurrency 
• High concurrency yields marginal gain

Challenges in Async FL

#1: How should concurrency quotas be fully utilized?

• Freedom in aggregation solicits stale local updates
• Local updates with high staleness harms the convergence

#2: How should stale local updates be avoided?



Participant Selection

Concurrency 
quota utilization

Challenges to tackle

Aggregate training loss[1]  

#1: Useful clients tends to have large gradients/losses

Intuitions

Vulnerable to corrupted 
clients in async FL

Prefer clients with high



Participant Selection

Concurrency 
quota utilization

Robustness 
against outliers

Prefer clients with high

Aggregate training loss[1]  

Detect corrupted clients 
by clustering

#1: Useful clients tends to have large gradients/losses 
#2: Clients with corrupted data have outlier losses

Intuitions

Challenges to tackle
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Participant Selection

Concurrency 
quota utilization

Stale update 
avoidance

Robustness 
against outliers

Prefer clients with high

Aggregate training loss[1]  

Tendency for being stale 

#1: Useful clients tends to have large gradients/losses 
#2: Clients with corrupted data have outlier losses 
#3: Reduce stale computation in the first placeIntuitions

Challenges to tackle

Detect corrupted clients 
by clustering



Participant Selection

Concurrency 
quota utilization

Stale update 
avoidance

Robustness 
against outliers

Prefer clients with high

Aggregate training loss[1]  

Tendency for being stale  

Use the moving average 
to estimate

#1: Useful clients tends to have large gradients/losses 
#2: Clients with corrupted data have outlier losses 
#3: Reduce stale computation in the first place 
#4: Clients’ staleness evolves steadily over time

Intuitions

Challenges to tackle

Detect corrupted clients 
by clustering



Aggregation Pace Control
Challenges to tackle

Stale Update 
Avoidance

Intuitions
#1: Bounded staleness guarantees progress in each aggregation

Goal: bound the staleness for all 
clients during the entire training

Convergence guarantee

Subproblem: bound the staleness growth 
for all clients in a certain time period



Aggregation Pace Control
Challenges to tackle

Stale Update 
Avoidance

Intuitions
#1: Bounded staleness guarantees progress in each aggregation 
#2: Bounding the staleness growth for a client in a time period 
guarantees the same for other faster clients

Goal: bound the staleness for all 
clients during the entire training

Convergence guarantee

Subproblem: bound the staleness growth 
for all clients in a certain time period

Client A
Time

Client B
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Aggregation Pace Control
Challenges to tackle

Stale Update 
Avoidance

Intuitions
#1: Bounded staleness guarantees progress in each aggregation 
#2: Bounding the staleness growth for a client in a time period 
guarantees the same for other faster clients

Goal: bound the staleness for all 
clients during the entire training

Convergence guarantee

Subproblem: bound the staleness growth 
for all clients in a certain time period

Our algorithm: adjust the aggregation pace to the 
currently running slowest client’s speed



Aggregation Pace Control
Challenges to tackle

Stale Update 
Avoidance

Goal: bound the staleness for all 
clients during the entire training

Convergence guarantee

Subproblem: bound the staleness growth 
for all clients in a certain time period

Our algorithm: adjust the aggregation pace to the 
currently running slowest client’s speed

Flexibility to 
environments



Evaluation

Setup
• Testbed w/ 200 clients 

- Concurrency limit is 10%
• Heterogeneity 

- System: Zipf’s distribution 
- Data: Realistic or synthetic

• Baselines 
- Oort: SOTA Sync FL 
- FedBuff[3]: SOTA Async FL

Pisces

Plato[2]

Extending

[2] Plato GitHub repo: https://github.com/TL-System/plato 
[3] Federated learning with buffered asynchronous aggregation, AISTATS’22

https://github.com/TL-System/plato


PisFes Oort FedBuff
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Traffic-to-Accuracy
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Pisces
https://github.com/SamuelGong/Pisces

An async FL framework for 
• Efficiency 
• Robustness 
• Flexibility

Concurrency 
quota utilization

Stale update 
avoidance

Robustness 
against outliers

Flexibility to 
environments

Efficiency in time
Participant 
selection

Model 
aggregation

Autom
ate

https://github.com/SamuelGong/Pisces

