

Pisces: Efficient Federated Learning via Guided Asynchronous Training

Zhifeng Jiang¹, Wei Wang¹, Baochun Li², Bo Li¹ ²University of Toronto ¹HKUST

FL & Synchronous FL

Federated learning allows multiple clients to collaboratively train a global model with their private data locked in local storage.

In synchronous FL, the server advances the global model on a round basis.

- Participant selection
- Local training
- Model aggregation

We primarily care about the time-to-accuracy performance, i.e., the elapsed time for the global model to reach a target accuracy.

Motivation for Asynchronous FL

SyncFL

In vanilla sync FL^[1], up to 57% of the training time is spent on waiting for stragglers.

To accelerate, Oort^[2] selects participants who have high speeds and high-quality data.

Tolerance for slow clients:

speeds are at odds, sync FL has to **trade** one for the other. FedAvg Oort FedAvg

However, when data quality and

Offers freedom in participant selection and model aggregation. **AsyncFL**

Challenges in Async FL

1. Freedom in selection solicits high concurrency which can hurt resource efficiency.

2. Freedom in aggregation solicits stale local updates, which can hurt model convergence.

Evaluating Efficiency and Sensitivity

Experiment Setup

- Cluster: 200 clients in the AWS public cloud; 10% clients run concurrently.
- Heterogeneity: (1) Zipf's speeds; (2) native or synthetic non-IID data partitions.
- Baseline: Oort[2] and FedBuff[3], SOTA sync FL method and async FL

Pisces Outperforms in Time Performance and Network Footprint

Optimizing Async FL w/ Pisces

1. Pisces selects clients with high data quality and low chance to generate stale updates.

$$U_i^{Pisces} = |B_i| \sqrt{\frac{1}{|B_i|} \sum_{k \in B_i} Loss(k)^2} \times \underbrace{\frac{1}{(\tilde{\tau}_i + 1)^{\beta}}}_{Staleness},$$

- To avoid being misled by corrupted clients, we detect outlier losses via clustering.
- As clients' staleness evolve steadily, we estimate it based on the moving average.
- 2. Pisces adapts the aggregation interval to currently slowest client's pace in a guided way.
- The staleness of each local update is proven to be **bounded** within any predefined limit b.
- This further enables us to prove the convergence in smooth non-convex settings:

$$\frac{1}{T} \sum_{t=0}^{T-1} \left\| \nabla f(w^t) \right\|^2 \le \frac{2 \left(f(w^0) - f^* \right)}{\alpha(Q)T} + \frac{L}{2} \frac{\beta(Q)}{\alpha(Q)} \sigma_{\ell}^2 + 3L^2 Q \beta(Q) \left(b^2 + 1 \right) \left(\sigma_{\ell}^2 + \sigma_g^2 + G \right).$$

Pisces is Insensitive to Training Environments or Learning Tasks

- Participation scales (100 to 400 clients)
- Corrupted client portion (0% to 20%)
- Staleness Penalty factors (0.2 to 0.8)
- Optimizers (SGD/Adam/FedProx^[4]
- Model architectures (LeNet-5/ customized CNN/ResNet-18)

Reference

- [1] Communication-efficient learning of deep networks from decentralized data. McMahan et al. AISTATS, 2017.
- [2] Oort: Efficient federated learning via guided participant selection. Fan et al. OSDI 2021.
- [3] Federated learning with buffered asynchronous aggregation, Nguyen et al. AISTATS, 2022.
- [4] Federated optimization in heterogeneous networks. Li et al. MLSys, 2020.

Code available at:

Contact: Zhifeng Jiang zjiangaj@cse.ust.hk