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FL & Synchronous FL

Federated learning allows multiple clients to
collaboratively train a global model with their
private data locked in local storage.

In synchronous FL, the server advances the
global model on a round basis.

Participant selection
Local training
Model aggregation

We primarily care about the time-to-accuracy
performance, I.e., the elapsed time for the
global model to reach a target accuracy.

Challenges in Async FL

1. Freedom in selection solicits high con-
currency which can hurt resource efficiency.
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Motivation for Asynchronous FL

However, when data quality and
speeds are at odds, sync FL
has to trade one for the other.

SyncFL

In vanilla sync FLI'I, up to 57% of the training
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Tolerance for slow clients:

AsyncFL
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Offers freedom in participant selection and model aggregation.

Evaluating Efficiency and Sensitivity

Experiment Setup
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» Cluster: 200 clients in the AWS public cloud; 10% clients run concurrently.
- Heterogeneity: (1) Zipf’'s speeds; (2) native or synthetic non-1ID data partitions.

e // |
. 1.2

- Baseline: Oort[2] and FedBuff[3], SOTA sync FL method and async FL
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2. Freedom In aggregation solicits stale local
updates, which can hurt model convergence.

» Time

/!f_¥ oA ;T

Version 1

Client A
Client B

Global model Version 2 \Version 3

Optimizing Async FL w/ Pisces

1. Pisces selects clients with high data quality
and low chance to generate stale updates.
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Staleness

VO
Data quality

« To avoid being misled by corrupted clients,
we detect outlier losses via clustering.

« As clients’ staleness evolve steadily, we
estimate it based on the moving average.

2. Pisces adapts the aggregation interval to
currently slowest client's pace in a guided way.
« The staleness of each local update is proven
to be bounded within any predefined limit b.
 This further enables us to prove the
convergence in smooth non-convex settings:
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Pisces Is Insensitive to Training Environments or Learning Tasks

» Optimizers (SGD/Adam/FedProx!4l
- Model architectures (LeNet-5/
customized CNN/ResNet-18)

- Participation scales (100 to 400 clients)
 Corrupted client portion (0% to 20%)
 Staleness Penalty factors (0.2 to 0.8)

Code available at:
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