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Solution: Speed-aware aggregation  Not only have higher client efficiency
pace control for bounded staleness .
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Static point of view 4
* Interval evenly distributed  Further guarantee convergence:
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Pisces guarantees convergence

Solution: Speed-aware aggregation
pace control for bounded staleness

Static point of view

* |nterval evenly distributed

[ ] [ |
.

> [ime
Adaptation for dynamics
* Anchored to the currently slowest

Not only have higher client eftficiency
But also achieve bounded staleness

\ 4

~urther guarantee convergence:
* At a rate slightly slower than O( I/
T) (1: # rounds)

Other designs on efficiency/robustness...

Please find more in the paper :)
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Pisces outperforms in time-to-accuracy
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Pisces: Results summary

Theory | Efficiency \ Practicality I

Provable convergence for 2.0% improvement In Fasily integrated to
smooth non-convex problems time-to-accuracy with no production frameworks
based on bounded staleness hetwork overhead ke Plato

O

github.com/SamuelGong/Pisces
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Second work: Dordis!

--------------------------------------------------------------------------------------------------------------------------------------

Privacy
" Worst-case defense. ..

---------------------------------------------------------------------------------------------------

Efficiency Primitives heavy in | i Client dropout yields
Ime-to-accuracy... comp.and comm. insufficient noise
Privacy-Enhancing . . . . .
Technique Federated Learning Secure Aggregation Differential Privacy

, , Global update leaks
Privacy Guarantee | Data kept on premises | Local updates unseen , ,
ittle about any client

Jiang et al."Dordis: Efficient Federated Learning with Dropout-Resilient Differential Privacy”, In EuroSys 24
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Goal |: Efficient secure aggregation Goal 2: Dropout-resilient DP
System-level optimization: Precise noise enforcement:
~L-specific pipeline parallelism add-then-remove
Efficiency | Resilience I
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Dordis - Overview

Goal |: Efficient secure aggregation Goal 2: Dropout-resilient DP
System-level optimization: Precise noise enforcement:
~L-specific pipeline parallelism add-then-remove
Efficiency | Integration \ Resilience I
Substantial speedup for Seamlessly packed in one Privacy preserved

general workloads comprehensive system regardless of client dropout
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SYStem Opt.: Utl\lze eXiStiﬂg rESOUrces Potential approach:
client comp. D o <> server comp. ¢ Pipe\ine paral\e\ism
Step Operation Resource  Stage Diff. stages, Diff. stages, same resource
|  Clients encode updates diff resources //\A\‘
2 Clients generate security keys client |:. |:|_
3  Clients establish shared secrets comp. |
4 Clients mask encoded updates > Workflow > Workflow
> Clients upload ,maSked Updates comm. 2 Traditional ML Free FL: Data movement
6 Server deals with dropout | |
7 Server computes the surm ver comp. 3 data movement restricted due to privacy
D server comp
8 Server updates global model |
9 Server dispatches global model comm. 4 : Challenge: New constraints in
Clients decode global model client optimizing pipeline parallelism

— O
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Problem |: Performance Bottleneck
Solution: pipeline parallelism tailored for FL I 2. Constrained optimization

|. Task partitioning: enable parallelism m* = arg min f, , Optimal # subtasks

meN,

* # Subtasks: decision variable to optimize st fo=b +1

Origina |
b, . = max{oy 1.}

» [ 1me

Or

* # Subtasks = 3

i o — The FL constraint
# Subtasks = 2 ‘ 0. = {O’ s =0,
e fs—l,c

v

:l 1 0, if s=0and c =0,
i r.=Jfqmor L. ifs#0andc=0,
Joeo1s otherwise
— [ime —

— [ me

Different time 115 Please find more In the paper :)
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Problem 2: Noise Deficiency

Intuition - Data privacy _
e Noise should never be insufficient — Intuition - Model Utility

Proactively add more noise than needed * The less noise the better—remove
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Problem 2: Noise Deficiency

Closed-form method
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and Is removed by the server
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Dordis: Results summary

Efficiency | Integration \ Resilience I

, | Privacy preserved with target
Substantial speedup up to Seamlessly packed in one | .
. noise precisely enforced
2.4% for general workloads comprehensive system

o
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regardless of client dropout
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Third work: Lotto

--------------------------------------------------------------------------------------------------------------------------------------

Privacy Can be a " . -
: , o Only or mostly works with honest participants
. Worst-case defense... = dishonest majority <
Privacy-Enhancing Federated Learnin Secure Aggregation Differential Privac
Technique . S8l 4

, , Global update leaks
Privacy Guarantee | Data kept on premises | Local updates unseen , ,
ittle about any client

Jiang et al."Lotto: Secure Participant Selection against Adversarial Servers in Federated Learning”, In Security 24
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Need for Lotto

e Ideal (global update w/
full noise)

Privacy achieved

>

Dishonesty proportion

Secure Aggregation Differential Privacy

138



Need for Lotto

Ideal (global update w/
full noise)
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Secure Aggregation Differential Privacy
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DP Failure (global update w/
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Privacy achieved

SecAgg Failure (local

Dishonesty proportion > update w/ nearly no noise)

Assumption: honest participants

Secure Aggregation Differential Privacy
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Ideal (global update w/

full noise)

DP Failure (global update w/
insufficient noise)

Privacy achieved

SecAgg Failure (local

Dishonesty proportion > update w/ nearly no noise)

Assumption: honest participants

Secure Aggregation Differential Privacy
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Ideal (global update w/

full noise)

DP Failure (global update w/
insufficient noise)

Privacy achieved

SecAgg Failure (local

Dishonesty proportion > update w/ nearly no noise)

Assumption: honest participants

Secure Aggregation Differential Privacy
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Need for Lotto

Ideal (global update w/

full noise)

DP Failure (global update w/
insufficient noise)

Privacy achieved

SecAgg Failure (local

Dishonesty proportion > update w/ nearly no noise)

Assumption: honest participants

Secure Aggregation Differential Privacy
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Population (10%-108%)

1
| ]
4
24
4

Selected participants (10! -102)

Federated Learning



Need for Lotto

deal (global update w/ | Population (104 -108)

full noise)

DP Failure (global update w/

insufficient noise) = e el C/\)

SecAgg Failure (local

Privacy achieved

Selected participants (10! -102)

> update w/ nearly no noise)

Dishonesty proportion
e Random: uniform chance

Assumption: honest participants

Secure Aggregation Differential Privacy Federated Learning
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Need for Lotto

deal (global update w/ | Population (104 -108)

full noise)

DP Failure (global update w/

insufficient noise) = e el C/\)

SecAgg Failure (local

Privacy achieved

Selected participants (10! -102)

> update w/ nearly no noise)

Dishonesty proportion
e Random: uniform chance

: . * Informed: "‘best-performing’ clients are preferred
Assumption: honest participants

(e.g., high speed and/or rich data)

Secure Aggregation Differential Privacy Federated Learning
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Need for Lotto

deal (global update w/ | Population (104 -108)

full noise) _ - - - _ - - - - _
- GENEEEEEEE
P ' \
. o ,' R 'l

DP Failure (global update w/

insufficient noise) -
é VEEE =

SecAgg Failure (local

Privacy achieved

>

- Selected participants (10! -102
Dishonesty proportion update w/ nearly no noise) P P ( )

Problem: participant selection can be

Assumption: honest participants manipulated by the malicious server

Secure Aggregation Differential Privacy Federated Learning
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No peer-to-peer network: all traffic relayed by the server
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Functionality |

Support both random and
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[ hreat model: malicious server colluding with

some clients, and a public key infrastructure (PKI)

Functionality | Security \

Support both random and Theoretical guarantee of
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Lotto - Overview

No peer-to-peer network: all traffic relayed by the server

[ hreat model: malicious server colluding with

some clients, and a public key infrastructure (PKI)

Functionality | Security \ Efficiency I

Support both random and Theoretical guarantee of Mild runtime overhead
informed selection preventing manipulation with no network cost
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Problem: Random selection

Current C/\)
round: 2

Randomness

RFp|<| (Z) =9

\

#2l RF.0(2) = | Public keys
#] RRa@=1 Pk

3| RFue(2) =7 /

H#

Selection criteria: <3
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Problem: Random selection

Current C/\)
round: 2

Randomness Select

RF.(2) =9 No
RFo0(2) = | Yes

RF.3(2) =7 No

Selection criteria: <3
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Problem: Random selection

Current C/\) Cé’?)
round: 2 b

Randomness  Select  Randomness  Select

# RF.(2) =9 No Yes

NOT matter,

#3l RFp3(2) =7 No No

RFpI<2<2> = | Yes Does No

Selection criteria; <3 For dishonest majority
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Problem: Random selection

Current C/\) (‘é"?) E
round: 2 e ~ Potential approach:

e Qutcome verification

Randomness  Select  Randomness  Select

# RF.(2) =9 No Yes

NOT matter,

#3l RFp3(2) =7 No No
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Problem: Random selection

Current C/\) Cé?)
round: 2 b

Randomness  Select  Randomness  Select

RF.(2) =9 No Yes

RFpI<2<2> = | Yes Does No
- NOT matter

RF:c2) =7 No No

Selection criteria; <3 For dishonest majority
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Potential approach:
e QOutcome verification

C/\D % | select #2

{ RF.0(2) < 37

RFo0(2) < 37 ]’> ‘ﬁ % RF-0(2) < 37



Problem: Random selection

Current C/\) (‘é"?) E
round: 2 e ~ Potential approach:

e Qutcome verification

Randomness  Select  Randomness  Select

RF.(2) =9 No
C/\) { | select #2, #4 #5 #6

RFpI<2<2> = | Yes Does
- NOT matter,
RF:52) =7 No NG

Selection criteria; <3 For dishonest majority |
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Problem: Random selection

Potential approach:
e Outcome verification

e Only within participants (10! - 102
What is achieved: 4 P P ( )

—ach participant (f\) % | select #2, #4, #5, #6

Necessary

sees a list of peers
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Problem: Random selection

Potential approach:
e QOutcome verification

e Only within participants (10! - 102
What is achieved: 4 P P ( )

—ach participant (f\) % | select #2, #4, #5, #6

Necessary

sees a list of peers who
presents only by chance.
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Problem: Random selection

Potential approach:
e QOutcome verification

e Only within participants (10! - 102
What is achieved: 4 P P ( )

—ach participant (f\) % | select #2, #4, #5, #6

Necessary

sees a list of peers who
presents only by chance.

Selection criteria; <3
g, = 3/10
Output range: [0, 10)
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Problem: Random selection

What is achieved:
—ach participant

sees a list of peers who
presents only by chance.

Selection criteria; <3
g, = 3/10
Output range: [0, 10)
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Problem: Random selection

What is achieved:
—ach participant

sees a list of peers who
presents only by chance.

What happens to the absent?
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Problem: Random selection

Problem: [ he server may arprtrarily

ighore honest clients

What is achieved lsnore before selection

—ach participant

sees a list of peers who

| (@] [«
)
[e] [a] [«

[ [@[E

presents only by chance.

Selected
What happens to the absent! - EEEE
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Problem: Random selection

Problem: [ he server may arprtrarily

ighore honest clients

What is achieved gnore before selection snore after selection
ach participant E;;; gggggggggg
sees a list of peers who _ EEEE EEE%EEEEEE
presents only by chance. Y SEEEEEEEEE

What happens o the absen? | EACROK =
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Problem: Random selection

Problem: [ he server may arprtrarily

ighore honest clients

What is achieved. gnore before selection snore after selection
—ach participant o o ol = 8 JEEE
sees a list of peers who _ g_ E E E E g E E E
presents only by chance. G e e e EEEE

What happens to the absent? e e :

-~

Unbounded advantage in growing dishonesty
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Problem: Random selection

Solution: Enforce a large enough list
and a small enough chance.
What is achieved:
—ach participant

sees a list of peers who
presents only by chance.

= What happens to the absent?
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Problem: Random selection

Solution: Enforce a large enough list
and a small enough chance.

What is achieved:

) o Example
scle Pa'”t'fi'i)a”t e len(list): > 200
sees a list of peers who . e Chance: < 0.1%

presents only by chance.

What happens to the absent?
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Problem: Random selection

Solution: Enforce a large enough list
and a small enough chance.

> 10 e »() 99

What is achieved: S
" . Example ga

—ach participant e len(list)y:>200 [%|os-
sees a list of peers who . e Chance:<0.1% =
presents only by chance. ' ©

i 80000 100000 120000
- What happens to the absent? # Dishonest clients

17 < 50%



Problem: Random selection

What is achieved:
—ach participant

sees a list of peers who
presents only by chance.

The absent will not get
arpbrtrarily ignored

172

Solution: Enforce a large enough list
and a small enough chance.

o[ 1.0 rmaz- - »(0.99
g
2
Example 2
* len(list): > 200 Eo.s -
e Chance:<0.1% =
L
o- OO - | |
80000 100000 120000
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Problem: Random selection

What is achieved:
—ach participant

sees a list of peers who
presents only by chance.

The absent will not get
arpbrtrarily ignored
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Solution: Enforce a large enough list
and a small enough chance.

[ >0.99

Example
* len(list): > 200
®* Chance: < 0.1%

Pr. Fail in‘HaIf Dishonesty‘

0.0 L | ,
80000 100000 120000
# Dishonest clients




Problem: Random selection

Public Round index

\

What is achieved: Predictable Examples: #2 will be selected as RFpo(2) = | < 3.

to server? /

—ach participant |
Public Public keys

sees a list of peers who 7
presents only by chance.
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Problem: Random selection

Problem: Attack surfaces enlarged!

Examples: #2 will be selected as RFpo(2) = | < 3.

What is achieved: Predictable | .
[t's honest, so the server may grow Its advantage by

. to server?
—ach participant

sees a list of peers who

presents only by chance &

Focused hacking
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Problem: Random selection

What is achieved: Predictable
to server?

—ach participant

sees a list of peers who 7
presents only by chance.

Problem: Attack surfaces enlarged!

Examples: #2 will be selected as RFpo(2) = | < 3.
[t's honest, so the server may grow Its advantage by

-—*’C@;}c\) VS ‘;(D\'-

Focused hacking Random compromise
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Problem: Random selection

Solution: Self-sampling with

verifiable random functions (VRFs)!2,

to server!

What is achieved: Predictable

—ach participant

sees a list of peers who 7
presents only by chance.

Fvaluation: VRF.evalgo(2) = (I, ) ( output, )
Secret key J

'Micali et al."Verifiable random functions”, In FOCS 99
2Dodis et al."“A verifiable random function with short proofs and keys”, In PKC '05
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Problem: Random selection

Solution: Self-sampling with

verifiable random functions (VRFs)!2,

to server!

What is achieved: Predictable

—ach participant

sees a list of peers who 7
presents only by chance.

Fvaluation: VRF.evalgo(2) = ( |, M) ( output, proof )

'Micali et al."Verifiable random functions”, In FOCS 99
2Dodis et al."“A verifiable random function with short proofs and keys”, In PKC '05

178



Problem: Random selection

Solution: Self-sampling with

verifiable random functions (VRFs)!2,

to server!

What is achieved: Predictable

—ach participant

sees a list of peers who 7
presents only by chance.

Fvaluation: VRF.evalgo(2) = ( |, M) ( output, proof )
Veritication: VRF.verpo( 2, |, ) = True

'Micali et al.“Verifiable random functions”, In FOCS "99 : PU bl |C |<e>/ J

2Dodis et al."“A verifiable random function with short proofs and keys”, In PKC '05
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Problem: Random selection

Solution: Self-sampling with

verifiable random functions (VRFs)!2,

What is achieved: Unpredictable | self-sample =
to server with (1, T12)

—ach participant

sees a list of peers who 7
presents only by chance.

Fvaluation: VRF.evalgo(2) = ( |, M) ( output, proof )
Veritication: VRF.verpo( 2, |, ) = True

'Micali et al."Verifiable random functions”, In FOCS 99
2Dodis et al."“A verifiable random function with short proofs and keys”, In PKC '05
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Problem: Random selection

Solution: Self-sampling with

verifiable random functions (VRFs)!2,

What is achieved: Unpredictable | self—samplelﬁ > —_—
. . < 74 % ver = |rue
“ach participant to server et (L) ~_
sees a list of peers who

Dresents on\y by chance. ver = [rue!? :> % ver = [rue!

Fvaluation: VRF.evalgo(2) = ( |, M) ( output, proof )
Veritication: VRF.verpo( 2, |, ) = True

'Micali et al."Verifiable random functions”, In FOCS 99
2Dodis et al."“A verifiable random function with short proofs and keys”, In PKC '05
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Problem: Random selection

Actual participants

throughout the training?

What is achieved:
—ach participant

sees a list of peers who
presents on\y by chance.
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Problem: Random selection

Actual participants Problem: The server may not follow.

throughout the training!

What is achieved. Involve non-selected dishonest ones
Cach participant
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presents Oﬂ‘y by chance T
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throughout the training!
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Problem: Random selection

. Solution: Utllize existing secure
Actual participants

semantics of secure aggregation

throughout the training?

What is achieved:
—ach participant

sees a list of peers who
presents only by chance.

'Thus also of distributed DP (other privacy-enhancing techniques may not have this feature and this is left for
future work).
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Actual partici
throughout the

Problem: Random selection

Solution: Utllize existing secure
DANTS

semantics of secure aggregation

training!

What is achieved: e Commitment: necessary info shared only once
—ach participant  Noprivacyrisk  ZZ—~.

sees a list ofpeerswho . . .........

presents only by chance. T

'Thus also of distributed DP (other privacy-enhancing techniques may not have this feature and this is left for

future work).
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Problem: Random selection

. Solution: Utllize existing secure
Actual participants

semantics of secure aggregation

throughout the training!

What is achieved: . e Commitment: necessary info shared only once
o . No privacy risk
—ach participant b LA TR TR
sees a list ofpeerswho . . .........
presents only by chance. T

'Thus also of distributed DP (other privacy-enhancing techniques may not have this feature and this is left for : - 0 Ew = = o e e e '
future work).
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Problem: Random selection

. Solution: Utllize existing secure
Actual participants

semantics of secure aggregation

throughout the training

What is achieved: . e Commitment: necessary info shared only once
o No privacy risk
—ach participant L o A TR A
sees a list of peers who . . .........
bresents only by chance. I

'Thus also of distributed DP (other privacy-enhancing techniques may not have this feature and this is left for o e e e e e o e e '
future work).
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Problem: Random selection

Minor Issues:

What is achieved: * Fixed sample size: over-selection
Fach participant . e Consistent round index: uniqueness check

sees a list of peers who

presents only by chance. Please find more In the paper :)

'Thus also of distributed DP (other privacy-enhancing techniques may not have this feature and this is left for
future work).
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Example (f\>

(Est.) latency

.25
2./s
| .65
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Problem: Informed selection

Example (f\>

(Est) latency  Select

| .25 Yes

2./ No

| .65 Yes

Selection criteria: the fastest For dishonest majority |
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Example (f\> @)

(Est) latency  Select  (Est) latency  Select

| Dsg Yes Yes

2.75 No Does No
- NOT matter
| .65 Yes No

Selection criteria: the fastest For dishonest majority |

194



Problem: Informed selection

Example (f\> Cé\gf;) Major Challenge: Client metrics are

hard to verify by honest clients

(Est) latency  Select  (Est) latency  Select

| Dsg Yes Yes

2.78 NO Does NO
- NOT matter,
| 65 Yo No

Selection criteria: the fastest For dishonest majority
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Problem: Informed selection

Example (‘/\> (‘@5} Major Challenge: Client metrics are

hard to verify by honest clients

(Est) latency  Select  (Est) latency  Select

= Metrics are fake
| Vs Yes Yes

A W W = W A

2.75 No No - -

Does |
- NOT matter, v

LR S LN A
| .65 Yes No

Selection criteria: the fastest For dishonest majority
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Example (f\> C@if?)

(Est) latency  Select  (Est) latency  Select

AS Yes Yes

2.78 NO DOGS NO
NOT matter,

| .65 Yes No

Selection criteria: the fastest For dishonest majority
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Problem: Informed selection

Example (f\> @)

(Est) latency  Select  (Est) latency  Select

AS Yes Yes

2.78 NO DOGS NO
NOT matter,

.65 Yes No

Selection criteria: the fastest For dishonest majority
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Major Challenge: Client metrics are

hard to verify by honest clients

Metrics are fake Metrics are true, but...
A W A W = N IPI1 IPI6 IPX IPI6
{ P &

.4 A4 A1 H 14 .4 A _4 A_1 A 14

Solution; Approximate inform

selection by random selection

Please find more In the paper :)
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Lotto prevents arbitrary manipulation

What can be proven:

AR AN AR A A5 AN S S W e
A A A A A fAE AN N e e Fos pom som soEm SN S fem pem e !

' =3 = =3 = )~ 1 1 =3 :Q P e — — QI . .
Population (] [®] [®] @ |2 [®] [®] €] [¥] & —) e ©|!  Participants
- G - - _—— - - _—_— __—_— - : 1
_—am mEm Em Em e En e e ™ ..., TEEETEEmEEEmEmEEmETEETEEEmETEEmEEEEeEmS

- G - __—_— _—— - __—_— _—_— - -
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Lotto prevents arbitrary manipulation

What can be proven:

s| 8| ] (o] |®| o] |7| || 3] &
el Lotto
Population 2] B [5] o (& (B ¥ [ & ] ——— & i Participants
3| 8| 3] |=| o (o] 9| || 3] &
Base rate of dishonest clients = ¢————— Fraction of dishonest clients
w/ high prob.
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Lotto prevents arbitrary manipulation

What can be proven:

s| 8| ] (o] |®| o] |7| || 3] &
e e e e e e e e Lotto
Population  [B] [Z] [E] [®] [Z] [®] ¥ [F @] |Z -_— Participants
—————————— Align
Base rate of dishonest clients = == | Fractions of dishonest clients
w/ high prob.

Example
e Population: 200,000

* Dishonesty base rate: 0.005
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Lotto prevents arbitrary manipulation

What can be proven:

Population ] &

Base rate of dishonest clients

Example
e Population: 200,000

* Dishonesty base rate: 0.005
e Target participants: 200

L otto

Align

— Fractions of dishonest clients
w/ high prob.

- == = W/lo Lotto

|0—8 -

Pr. Bound

10715

0.0 0.1 0.2 0.3 0.4

Portion of Dishonest Participants
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Lotto prevents arbitrary manipulation

What can be proven:

Population ] &

Base rate of dishonest clients

Example
e Population: 200,000

* Dishonesty base rate: 0.005
e Target participants: 200

L otto

Align
—
w/ high prob.

Fractions of dishonest clients

|O—I_

- = = Ww/o Lotto

_8 _
10 e W[ LOtLO

Pr. Bound

|O—I5 -

0.0 0.1 0.2 0.3
Portion of Dishonest Participants

0.4
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Lotto prevents arbitrary manipulation

What can be proven:

il e Lotto
Population (2] [#] [¢] o] 5] (o] o] [5] ] ] ~——  i[s] [¢] (o] o] [8] [5] [s] ] [s]: Participants

slielieleiciciciciclc

---------- Align

Base rate of dishonest clients = == 1 Fractions of dishonest clients

w/ high prob.
Example L
-
e Population: 200,000 3 === wlo Lotto
- @ 107 - —— w/ Lott
e Dishonesty base rate: 0.005 it Wi LOTto
* Target participants: 200 10715 - | | |
0.0 0.1 0.2 0.3 0.4

Portion of Dishonest Participants
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Lotto induces no or mild overhead
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Lotto induces no or mild overhead

4
FEMNIST = ’g )
@CNN - =
0
100 400 700
Openlmage _g /g
@MobileNet =
100 400 700
50
Reddit 0T 40.06§39.59
£ E 26.94)27.53
= =
@Albert ; R IR

100 400 700

Population size

/o Lott ..
= x/oLo:too Lotto adds no more than 10% in time I
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'Random selection as an example. See results for informed selection in the paper.



Lotto induces no or mild overhead
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'Random selection as an example. See results for informed selection in the paper.
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| otto functions as insecure selectors

Oort! = State-of-the-art informed selector: optimized for time-to-accuracy of training

'Lai et al."Oort: Efficient Federated Learning via Guided Participant Selection™, In OSDI "2 | 212



| otto functions as insecure selectors

Oort! = State-of-the-art informed selector: optimized for time-to-accuracy of training

Oort Oort Oort
75 — 30
—~ T 2 —
3 3 3
3 > z g ©
C % C
o 25 ié o 10
< O <
0 0 0
0 |10 20 30 0 |10 20 30 O 10 20 30 40 50
Time (min) Time (min) Time (min)

FEMNISTQCNN Openlmage@MobileNet Reddit@Albert

'Lai et al."Oort: Efficient Federated Learning via Guided Participant Selection™, In OSDI "2 | 213



| otto functions as insecure selectors

Oort! = State-of-the-art informed selector: optimized for time-to-accuracy of training

Oort Lotto
75 .
S T 2
3 > z
C X
§ 25 io’_
< ;
0 0
0 |0 20 30
Time (min)

FEMNIST@QCNN

Oort
0 |10 20
Time (min)

Openlmage@MobileNet

Lotto

30

Oort Lotto
30
S
> 20
s
o 10
O
<
0
O 10 20 30 40 50
Time (min)
Reddit@Albert

Lotto well approximate Oort with no
cost in time-to-accuracy performance

'Lai et al."Oort: Efficient Federated Learning via Guided Participant Selection™, In OSDI "2 |
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Lotto: Results summary

Functionality | Security \ Efficiency I

Support both random Theoretical guarantee (tight | .
: . Mild runtime overhead (=10%)
(exact) and informed (well probability bound) of |
: . . . . with no network cost (<1%)
approximated) selection preventing manipulation

o

github.com/SamuelGong/Lotto
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Summary: My efforts

--------------------------------------------------------------------------------------------------------------------------------------

Privacy

: Lott
. Worst-case defense... OFEO
Effici
| clency Pisces Dordis
[ime-to-accuracy...
Privacy-Enhancing cederated | earni S A " Yifferantial Pre
Technique ederated Learning ecure Aggregation flerential Privacy

, , Global update leaks
Privacy Guarantee | Data kept on premises | Local updates unseen °

ittle about any client
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Future work



|. Better private learning on the edge
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