
Towards Private and Efficient
Cross-Device Federated Learning

PhD Thesis Defense by Zhifeng Jiang
27 May 2024

Advisor : Wei Wang
Chairperson: Yi-Min Lin (SOSC)
Committee: Mo Li, Shuai Wang, Jun Zhang (ECE), Cong Wang (CityU)

2

Growth of edge computing

Edge devices generate
massive data

Generated data volume1

1Exploding topics blog, “Amount of Data Created Daily (2024)”, 2023

2022 2025

ZB

97
120

147
181

3

Edge devices generate
massive data

Increasing resource on
edge devices

2022 2025

ZB

97
120

147
181

IP 12 Pro IP 15 Pro

ms

Inference time2Generated data volume1

86

47 44 37

1Exploding topics blog, “Amount of Data Created Daily (2024)”, 2023
2Photoroom blog, “Core ML performance benchmark iPhone 15 (2023)”, 2023

Growth of edge computing

4

Edge devices generate
massive data

Increasing resource on
edge devices

machine learning
driven to the edge

1Exploding topics blog, “Amount of Data Created Daily (2024)”, 2023
2Photoroom blog, “Core ML performance benchmark iPhone 15 (2023)”, 2023

Generated data volume1

IP 12 Pro IP 15 Pro

ms

Inference time2

86

47 44 37

2022 2025

ZB

97
120

147
181

Growth of edge computing

5

Private learning on the edge

6

1McMahan et al. “Communication-Efficient Learning of Deep Networks from Decentralized Data”, In AISTATS ’17

Privacy-Enhancing
Technique

Privacy Guarantee

Federated Learning1

Data kept on premises

Private learning on the edge

7

1McMahan et al. “Communication-Efficient Learning of Deep Networks from Decentralized Data”, In AISTATS ’17

Privacy-Enhancing
Technique

Privacy Guarantee

Federated Learning1

Data kept on premises

1. Participant selection

Private learning on the edge

8

1McMahan et al. “Communication-Efficient Learning of Deep Networks from Decentralized Data”, In AISTATS ’17

Privacy-Enhancing
Technique

Privacy Guarantee

Federated Learning1

Data kept on premises

1. Participant selection

2. Local training
 Local model update→

Private learning on the edge

9

1McMahan et al. “Communication-Efficient Learning of Deep Networks from Decentralized Data”, In AISTATS ’17

Privacy-Enhancing
Technique

Privacy Guarantee

Federated Learning1

Data kept on premises

1. Participant selection

3. Model aggregation
 Global model update→

2. Local training
 Local model update→

Private learning on the edge

10

1McMahan et al. “Communication-Efficient Learning of Deep Networks from Decentralized Data”, In AISTATS ’17

Privacy-Enhancing
Technique

Privacy Guarantee

Federated Learning1

Data kept on premises

1. Participant selection

3. Model aggregation
 Global model update→

2. Local training
 Local model update→

Private learning on the edge

11

1McMahan et al. “Communication-Efficient Learning of Deep Networks from Decentralized Data”, In AISTATS ’17

Privacy-Enhancing
Technique

Privacy Guarantee

Federated Learning1

Data kept on premises

Private learning on the edge

Real application:
Google’s Keyboard

12

1McMahan et al. “Communication-Efficient Learning of Deep Networks from Decentralized Data”, In AISTATS ’17

Privacy-Enhancing
Technique

Privacy Guarantee

Federated Learning1

Data kept on premises

Private learning on the edge

Real application:
Google’s Keyboard, …

13

1McMahan et al. “Communication-Efficient Learning of Deep Networks from Decentralized Data”, In AISTATS ’17
2Yue et al. “Gradient Obfuscation Gives a False Sense of Security in Federated Learning”, In Security ’23

Privacy-Enhancing
Technique

Privacy Guarantee

Federated Learning1

Data kept on premises
Ground truth Reconstructed

Problem: Data can be reconstructed
from local model updates2

Private learning on the edge

14

Privacy-Enhancing
Technique

Privacy Guarantee

Federated Learning1

Data kept on premises

Secure Aggregation3,4

Local updates unseen

1McMahan et al. “Communication-Efficient Learning of Deep Networks from Decentralized Data”, In AISTATS ’17
2Yue et al. “Gradient Obfuscation Gives a False Sense of Security in Federated Learning”, In Security ’23
3Bonawitz et al. “Practical Secure Aggregation for Privacy-Preserving Machine Learning”, In CCS ‘17
4Bell et al. “Secure Single-Server Aggregation with (Poly) Logarithmic Overhead”, In CCS ‘20

Private learning on the edge

15

Privacy-Enhancing
Technique

Privacy Guarantee

Federated Learning1

Data kept on premises

Secure Aggregation3,4

1McMahan et al. “Communication-Efficient Learning of Deep Networks from Decentralized Data”, In AISTATS ’17
2Yue et al. “Gradient Obfuscation Gives a False Sense of Security in Federated Learning”, In Security ’23
3Bonawitz et al. “Practical Secure Aggregation for Privacy-Preserving Machine Learning”, In CCS ‘17
4Bell et al. “Secure Single-Server Aggregation with (Poly) Logarithmic Overhead”, In CCS ’20

5Nasr et al. “Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference
Attacks against Centralized and Federated Learning”, In S&P ’19

Local updates unseen

Problem: Data still
has footprints in

global model update5

Private learning on the edge

16

Privacy-Enhancing
Technique

Privacy Guarantee

Federated Learning1

Data kept on premises

Secure Aggregation3,4 Differential Privacy6

Global update leaks
little about any client

1McMahan et al. “Communication-Efficient Learning of Deep Networks from Decentralized Data”, In AISTATS ’17
2Yue et al. “Gradient Obfuscation Gives a False Sense of Security in Federated Learning”, In Security ’23
3Bonawitz et al. “Practical Secure Aggregation for Privacy-Preserving Machine Learning”, In CCS ‘17
4Bell et al. “Secure Single-Server Aggregation with (Poly) Logarithmic Overhead”, In CCS ’20

+ →
Random

noise

5Nasr et al. “Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference
Attacks against Centralized and Federated Learning”, In S&P ’19
6Cynthia. “Differential Privacy”, 06.

Local updates unseen

Private learning on the edge

17

Secure Aggregation Differential Privacy

Global update leaks
little about any client

+ →
Random

noise

Local updates unseen
 Practice1,2: = 1/4
Each client adds an even share of the
target noise to its local model update

+

+

+

+

1Kairouz et al. “The Distributed Discrete Gaussian Mechanism for Federated Learning with Secure
Aggregation”, In ICML ’21
2Agarwal. “The Skellam Mechanism for Differentially Private Federated Learning”, In NeurIPS ‘21

Private learning on the edge

Com
bined

18

Privacy-Enhancing
Technique

Privacy Guarantee

Federated Learning

Data kept on premises

Secure Aggregation Differential Privacy

Global update leaks
little about any client

Local updates unseen

Private learning on the edge

19

Privacy-Enhancing
Technique

Privacy Guarantee

Federated Learning

Data kept on premises

Secure Aggregation Differential Privacy

Global update leaks
little about any client

Local updates unseen

My Research

Stragglers
bottleneck time

Primitives heavy in
comp. and comm.

Client dropout yields
insufficient noise

20

Privacy-Enhancing
Technique

Privacy Guarantee

Federated Learning

Data kept on premises

Secure Aggregation Differential Privacy

Global update leaks
little about any client

Local updates unseen

My Research

Stragglers
bottleneck time

Primitives heavy in
comp. and comm.

Client dropout yields
insufficient noise

Only or mostly works with honest participantsCan be a
dishonest majority

x

21

Privacy-Enhancing
Technique

Privacy Guarantee

Federated Learning

Data kept on premises

Secure Aggregation Differential Privacy

Global update leaks
little about any client

Local updates unseen

My Research

Stragglers
bottleneck time

Primitives heavy in
comp. and comm.

Client dropout yields
insufficient noise

Only or mostly works with honest participantsCan be a
dishonest majority

Privacy
Worst-case defense…

x

22

Privacy-Enhancing
Technique

Privacy Guarantee

Federated Learning

Data kept on premises

Secure Aggregation Differential Privacy

Global update leaks
little about any client

Local updates unseen

My Research

Stragglers
bottleneck time

Primitives heavy in
comp. and comm.

Client dropout yields
insufficient noise

Only or mostly works with honest participantsCan be a
dishonest majority

Efficiency
Time-to-accuracy…

xPrivacy
Worst-case defense…

23

Privacy-Enhancing
Technique

Privacy Guarantee

Federated Learning

Data kept on premises

Secure Aggregation Differential Privacy

Global update leaks
little about any client

Local updates unseen

First work: Pisces1

Stragglers
bottleneck time

Primitives heavy in
comp. and comm.

Client dropout yields
insufficient noise

Only or mostly works with honest participantsCan be a
dishonest majority

Efficiency
Time-to-accuracy…

xPrivacy
Worst-case defense…

1Jiang et al. “Pisces: Efficient Federated Learning via Guided Asynchronous Training”, In SoCC ’22

24

Need for Pisces

Federated Learning

Synchronous

25

Need for Pisces

Federated Learning

Time

A training round

Participants

Straggler

Synchronous

26

Need for Pisces

Federated Learning

Time

A training round

Participants

Straggler

Synchronous

…

27

Need for Pisces

Federated Learning

Time

A training round

Participants

Straggler

Synchronous

…

Idle waiting: 33.2% to 57.2%

28

Need for Pisces

Federated Learning

Time

A training round

Participants

Straggler

Synchronous

…

Idle waiting: 33.2% to 57.2%

Potential approach:
• Prioritize fast clients in selection

 Time-to-accuracy = mean round time # rounds ×

29

Need for Pisces

Federated Learning

Time

A training round

Participants

Straggler

Synchronous

…

Idle waiting: 33.2% to 57.2%

Potential approach:
• Prioritize fast clients in selection

 Time-to-accuracy = mean round time # rounds ×

Selected clients have bad data quality…

30

Need for Pisces

Federated Learning

Time

A training round

Participants

Straggler

Synchronous

…

Idle waiting: 33.2% to 57.2%
 Time-to-accuracy = mean round time # rounds ×

Potential approach:
• Prioritize fast clients in selection
• Also consider their data quality

31

Need for Pisces

SOTA - Oort1

1Lai et al. “Oort: Efficient Federated Learning via Guided Participant Selection”, In OSDI ’21

32

Need for Pisces

1Lai et al. “Oort: Efficient Federated Learning via Guided Participant Selection”, In OSDI ’21

SOTA - Oort1

• Definition of score for client :

Ui i

Ui = (T
ti)

1(T<ti)×α

speed

×|Bi|
1

|Bi| ∑
k∈Bi

Loss(k)2

data quality

33

Need for Pisces

1Lai et al. “Oort: Efficient Federated Learning via Guided Participant Selection”, In OSDI ’21

SOTA - Oort1

• Definition of score for client :

• Clients with higher score are selected

Ui i

Ui = (T
ti)

1(T<ti)×α

speed

×|Bi|
1

|Bi| ∑
k∈Bi

Loss(k)2

data quality

Data quality

Speed

Ideal
 High speed

& High data quality
→

High

Low

34

Need for Pisces

1Lai et al. “Oort: Efficient Federated Learning via Guided Participant Selection”, In OSDI ’21

Data quality

Speed

High

Low

 speed ∝ 1
data quality

SOTA - Oort1

• Definition of score for client :

• Clients with higher score are selected

Ui i

Ui = (T
ti)

1(T<ti)×α

speed

×|Bi|
1

|Bi| ∑
k∈Bi

Loss(k)2

data quality

Ideal
 High speed

& High data quality
→

35

Need for Pisces

1Lai et al. “Oort: Efficient Federated Learning via Guided Participant Selection”, In OSDI ’21

SOTA - Oort1

• Definition of score for client :

• Clients with higher score are selected

Ui i

Ui = (T
ti)

1(T<ti)×α

speed

×|Bi|
1

|Bi| ∑
k∈Bi

Loss(k)2

data quality

Data quality

Speed

High

LowData quality
Speed

 High speed
& Low data quality

speed ∝ 1
data quality

→

Ideal
 High speed

& High data quality
→

36

Need for Pisces

1Lai et al. “Oort: Efficient Federated Learning via Guided Participant Selection”, In OSDI ’21

SOTA - Oort1

• Definition of score for client :

• Clients with higher score are selected

Ui i

Ui = (T
ti)

1(T<ti)×α

speed

×|Bi|
1

|Bi| ∑
k∈Bi

Loss(k)2

data quality

Data quality

Speed

High

LowData quality
Speed

 High speed
& Low data quality

speed ∝ 1
data quality

→

Ideal
 High speed

& High data quality
→

Oort is 2.7× worse than random selection

37

Need for Pisces

1Lai et al. “Oort: Efficient Federated Learning via Guided Participant Selection”, In OSDI ’21

SOTA - Oort1

• Definition of score for client :

• Clients with higher score are selected

Ui i

Ui = (T
ti)

1(T<ti)×α

speed

×|Bi|
1

|Bi| ∑
k∈Bi

Loss(k)2

data quality

Data quality

Speed

High

LowData quality
Speed

 High speed
& Low data quality

speed ∝ 1
data quality

→

Ideal
 High speed

& High data quality
→

Problem: Navigation between clients’ speed and
data quality is inherently tricky

Oort is 2.7× worse than random selection

38

Pisces - Overview

39

Pisces - Overview
Mitigating straggler effects for maximum efficiency

40

Pisces - Overview
Mitigating straggler effects for maximum efficiency

Principled asynchronous training: Side-step the
tricky speed-data tradeoffs with minimum side-effects

41

Pisces - Overview

Theory

Mitigating straggler effects for maximum efficiency

Provable convergence for
smooth non-convex problems

Principled asynchronous training: Side-step the
tricky speed-data tradeoffs with minimum side-effects

42

Pisces - Overview

EfficiencyTheory

Improvement in
time-to-accuracy

Mitigating straggler effects for maximum efficiency

Provable convergence for
smooth non-convex problems

Principled asynchronous training: Side-step the
tricky speed-data tradeoffs with minimum side-effects

43

Pisces - Overview

Efficiency PracticalityTheory

Easily Integrated to
production frameworks

Mitigating straggler effects for maximum efficiency

Provable convergence for
smooth non-convex problems

Principled asynchronous training: Side-step the
tricky speed-data tradeoffs with minimum side-effects

Improvement in
time-to-accuracy

44

Problem: Straggler mitigation
Asynchronous training:

45

Asynchronous training:
• Early aggregate available local updates without

waiting for other running participants

Problem: Straggler mitigation

46

Asynchronous training:
• Early aggregate available local updates without

waiting for other running participants
• Immediately invokes available clients

Problem: Straggler mitigation

47

Asynchronous training:
• Early aggregate available local updates without

waiting for other running participants
• Immediately invokes available clients
Intuition: side-step the speed-data tradeoff

High

LowData quality

Speed

Sync High speed
& Low data quality

→ Async High data quality
(whatever speed)

→
Data quality

Speed

Problem: Straggler mitigation

48

Asynchronous training:
• Early aggregate available local updates without

waiting for other running participants
• Immediately invokes available clients
Intuition: side-step the speed-data tradeoff

High

LowData quality

Speed

Sync High speed
& Low data quality

→
Data quality

Speed

Async High data quality
(whatever speed)

→

Problem: tolerance of slow clients
yields stale local updates

Problem: Straggler mitigation

49

Asynchronous training:
• Early aggregate available local updates without

waiting for other running participants
• Immediately invokes available clients
Intuition: side-step the speed-data tradeoff

High

LowData quality

Speed

Sync High speed
& Low data quality

→
Data quality

Speed

Problem: tolerance of slow clients
yields stale local updates

Async High data quality
(whatever speed)

→

Skip

…Agg

Time

Agg

Contribute

Problem: Straggler mitigation

50

Asynchronous training:
• Early aggregate available local updates without

waiting for other running participants
• Immediately invokes available clients
Intuition: side-step the speed-data tradeoff

High

LowData quality

Speed

Sync High speed
& Low data quality

→
Data quality

Speed

Problem: tolerance of slow clients
yields stale local updates

Async High data quality
(whatever speed)

→

…Agg

Time

Agg

Skip too many

…Agg

Time

AggAgg …

Skip Contribute

Useless or harmful

Problem: Straggler mitigation

51

Asynchronous training:
• Early aggregate available local updates without

waiting for other running participants
• Immediately invokes available clients
Intuition: side-step the speed-data tradeoff

High

LowData quality

Speed

Sync High speed
& Low data quality

→
Data quality

Speed

Problem: tolerance of slow clients
yields stale local updates

Async High data quality
(whatever speed)

→

…Agg

Time

Agg

…Agg

Time

AggAgg …

Outdated version of global model

Skip too many

Skip Contribute

Problem: Straggler mitigation

52

Asynchronous training:
• Early aggregate available local updates without

waiting for other running participants
• Immediately invokes available clients
Intuition: side-step the speed-data tradeoff

High

LowData quality

Speed

Sync High speed
& Low data quality

→
Data quality

Speed

Problem: tolerance of slow clients
yields stale local updates

Async High data quality
(whatever speed)

→

…Agg

Time

Agg

…Agg

Time

AggAgg …

Skip too many

Skip Contribute

“Stale”

Problem: Straggler mitigation

53

Potential approach:
• Asynchronous training

Problem: Straggler mitigation

54

Potential approach:
• Asynchronous training
• Pause aggregation when someone

will exceed the staleness bound

Problem: Straggler mitigation

55

E.g., staleness bound is 2

Problem: Straggler mitigation
Potential approach:
• Asynchronous training
• Pause aggregation when someone

will exceed the staleness bound

56

E.g., staleness bound is 2
No more than 2 aggregations behind→

…Agg

Time

AggPauseAgg

Problem: Straggler mitigation
Potential approach:
• Asynchronous training
• Pause aggregation when someone

will exceed the staleness bound

571Ho et al. “More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server”, In NeurIPS ’13

Stale Synchronous Parallel (SSP)1 in traditional ML

E.g., staleness bound is 2
No more than 2 aggregations behind→

…Agg

Time

AggPauseAgg

Problem: Straggler mitigation
Potential approach:
• Asynchronous training
• Pause aggregation when someone

will exceed the staleness bound

581Ho et al. “More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server”, In NeurIPS ’13

Problem: Unaware of clients’ speed and
may be suboptimal in client efficiency

Stale Synchronous Parallel (SSP)1 in traditional ML

E.g., staleness bound is 2
No more than 2 aggregations behind→

…Agg

Time

AggAgg Pause

Problem: Straggler mitigation
Potential approach:
• Asynchronous training
• Pause aggregation when someone

will exceed the staleness bound

591Ho et al. “More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server”, In NeurIPS ’13

Agg

Time

AggPauseAgg

Stale Synchronous Parallel (SSP)1 in traditional ML

E.g., staleness bound is 2
No more than 2 aggregations behind→

…Agg

Time

AggPauseAgg

Problem: Unaware of clients’ speed and
may be suboptimal in client efficiency

SSP: 2 as the staleness bound

Problem: Straggler mitigation
Potential approach:
• Asynchronous training
• Pause aggregation when someone

will exceed the staleness bound

601Ho et al. “More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server”, In NeurIPS ’13

Agg

Time

AggPauseAgg

Stale Synchronous Parallel (SSP)1 in traditional ML

E.g., staleness bound is 2
No more than 2 aggregations behind→

…Agg

Time

AggPauseAgg

Problem: Unaware of clients’ speed and
may be suboptimal in client efficiency

SSP: 2 as the staleness bound

When should they be done?

Problem: Straggler mitigation
Potential approach:
• Asynchronous training
• Pause aggregation when someone

will exceed the staleness bound

611Ho et al. “More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server”, In NeurIPS ’13

Agg

Time

AggPauseAgg

Too early

Time

AggAgg

Better case: more contributions

Agg

Too early

Stale Synchronous Parallel (SSP)1 in traditional ML

E.g., staleness bound is 2
No more than 2 aggregations behind→

…Agg

Time

AggPauseAgg

Problem: Unaware of clients’ speed and
may be suboptimal in client efficiency

SSP: 2 as the staleness bound

Problem: Straggler mitigation
Potential approach:
• Asynchronous training
• Pause aggregation when someone

will exceed the staleness bound

62

Solution: Speed-aware aggregation
pace control for bounded staleness

Problem: Straggler mitigation

63

Solution: Speed-aware aggregation
pace control for bounded staleness

Time

Static point of view
• Interval evenly distributed

AggAgg Agg

E.g., staleness bound is 2
No more than 2 aggregation behind→

…

Problem: Straggler mitigation

64

Solution: Speed-aware aggregation
pace control for bounded staleness

Time

Static point of view
• Interval evenly distributed

AggAgg Agg

Not aggregate until

E.g., staleness bound is 2
No more than 2 aggregation behind→

…

Problem: Straggler mitigation

65

Solution: Speed-aware aggregation
pace control for bounded staleness

Time

Static point of view
• Interval evenly distributed

AggAggAgg

E.g., staleness bound is 2
No more than 2 aggregation behind→

…

Problem: Straggler mitigation

66

Solution: Speed-aware aggregation
pace control for bounded staleness

Static point of view
• Interval evenly distributed

Adaptation for dynamics
• Anchored to the currently slowest

Time

AggAgg …

Problem: Straggler mitigation

67

Solution: Speed-aware aggregation
pace control for bounded staleness

Static point of view
• Interval evenly distributed

Adaptation for dynamics
• Anchored to the currently slowest

Time

AggAgg …

Pisces guarantees convergence
Not only have higher client efficiency
But also achieve bounded staleness

68

Solution: Speed-aware aggregation
pace control for bounded staleness

Static point of view
• Interval evenly distributed

Adaptation for dynamics
• Anchored to the currently slowest

Time

AggAgg …

Pisces guarantees convergence

Further guarantee convergence:

• At a rate slightly slower than O(1/
T) (T: # rounds)

Not only have higher client efficiency
But also achieve bounded staleness

69

Solution: Speed-aware aggregation
pace control for bounded staleness

Static point of view
• Interval evenly distributed

Adaptation for dynamics
• Anchored to the currently slowest

Time

AggAgg …

Pisces guarantees convergence

Please find more in the paper :)

Not only have higher client efficiency
But also achieve bounded staleness

Further guarantee convergence:

• At a rate slightly slower than O(1/
T) (T: # rounds)

Other designs on efficiency/robustness…

70

Pisces outperforms in time-to-accuracy

1Lai et al. “Oort: Efficient Federated Learning via Guided Participant Selection”, In OSDI ’21

71

Pisces outperforms in time-to-accuracy

1Lai et al. “Oort: Efficient Federated Learning via Guided Participant Selection”, In OSDI ’21

Oort1 → State-of-the-art synchronous method: navigating the speed-data tradeoff

72

Pisces outperforms in time-to-accuracy

1Lai et al. “Oort: Efficient Federated Learning via Guided Participant Selection”, In OSDI ’21

Oort1 → State-of-the-art synchronous method: navigating the speed-data tradeoff

MNIST@LeNet5 FEMNIST@LeNet5 CIFAR10@ResNet18 Reddit@Albert

73

Pisces outperforms in time-to-accuracy

1Lai et al. “Oort: Efficient Federated Learning via Guided Participant Selection”, In OSDI ’21

Oort1 → State-of-the-art synchronous method: navigating the speed-data tradeoff

MNIST@LeNet5 FEMNIST@LeNet5 CIFAR10@ResNet18 Reddit@Albert

2.0× 1.8× 1.6×

1.9×

74

Pisces outperforms in time-to-accuracy

1Lai et al. “Oort: Efficient Federated Learning via Guided Participant Selection”, In OSDI ’21

Oort1 → State-of-the-art synchronous method: navigating the speed-data tradeoff

MNIST@LeNet5 FEMNIST@LeNet5 CIFAR10@ResNet18 Reddit@Albert

2.0× 1.8× 1.6×

1.9×

0 0.05 0.1 0.15 0.2

Traffic-to-
acc (GB)

0 0.205 0.41

0.41
Traffic-to-
acc (GB)

0 27.5 55 82.5 110

Traffic-to-
acc (GB)

0 30 60 90 120

Traffic-to-
acc (GB)

75

Pisces outperforms in time-to-accuracy

1Lai et al. “Oort: Efficient Federated Learning via Guided Participant Selection”, In OSDI ’21

Oort1 → State-of-the-art synchronous method: navigating the speed-data tradeoff

Pisces accelerates Oort by up to 2×
without significant network cost

MNIST@LeNet5 FEMNIST@LeNet5 CIFAR10@ResNet18 Reddit@Albert

2.0× 1.8× 1.6×

1.9×

0 0.05 0.1 0.15 0.2

0.2
0.16Traffic-to-

acc (GB)
0 0.205 0.41

0.41
0.35Traffic-to-

acc (GB)
0 27.5 55 82.5 110

97
109Traffic-to-

acc (GB)
0 30 60 90 120

119
78Traffic-to-

acc (GB)

76

Pisces: Results summary

Efficiency PracticalityTheory

2.0× improvement in
time-to-accuracy with no

network overhead

Easily integrated to
production frameworks

like Plato

Provable convergence for
smooth non-convex problems
based on bounded staleness

github.com/SamuelGong/Pisces

http://github.com/SamuelGong/Pisces

77

Privacy-Enhancing
Technique

Privacy Guarantee

Federated Learning

Data kept on premises

Secure Aggregation Differential Privacy

Global update leaks
little about any client

Local updates unseen

Second work: Dordis1

Primitives heavy in
comp. and comm.

Client dropout yields
insufficient noise

Only or mostly works with honest participantsCan be a
dishonest majority

Efficiency
Time-to-accuracy…

xPrivacy
Worst-case defense…

1Jiang et al. “Dordis: Efficient Federated Learning with Dropout-Resilient Differential Privacy”, In EuroSys ’24

Stragglers
bottleneck time

78

Need for Dordis - 1

Secure Aggregation

79

Need for Dordis - 1

Secure Aggregation

Local
updates
NOT
visible

Global
update
visible

80

Need for Dordis - 1

Secure Aggregation

Local
updates
NOT
visible

Global
update
visible

w1 w2

w3 w4

m12

m13
m14

m24

m23

m34

1. Pairwise agreement

81

Need for Dordis - 1

Secure Aggregation

Local
updates
NOT
visible

Global
update
visible

w1 w2

w3 w4

m12

m13
m14

m24

m23

m34

w1 + m12 + m13+ m14

w2 - m12 + m23 + m24

w3 - m13 - m23 + m34

w4 - m14 - m24 - m34

w1 +
w2 +
w3 +
w4

Σ

1. Pairwise agreement 3. Masks cancelled out

82

Need for Dordis - 1

Secure Aggregation

Local
updates
NOT
visible

Global
update
visible

w1 w2

w3 w4

m12

m13
m14

m24

m23

m34

w1 + m12 + m13+ m14

w2 - m12 + m23 + m24

w3 - m13 - m23 + m34

w4 - m14 - m24 - m34

w1 +
w2 +
w3 +
w4

Σ

1. Pairwise agreement 3. Masks cancelled out

4. Outstanding masks recovered

w2 - m12 + m23 + m24

w3 - m13 - m23 + m34

w4 - m14 - m24 - m34

w2 +
w3 +
w4

Σ

N/A

83

Need for Dordis - 1

Secure Aggregation

Local
updates
NOT
visible

Global
update
visible

w1 w2

w3 w4

m12

m13
m14

m24

m23

m34

w1 + m12 + m13+ m14

w2 - m12 + m23 + m24

w3 - m13 - m23 + m34

w4 - m14 - m24 - m34

w1 +
w2 +
w3 +
w4

Σ

1. Pairwise agreement 3. Masks cancelled out

2. Masks backed up 4. Outstanding masks recovered

w2 - m12 + m23 + m24

w3 - m13 - m23 + m34

w4 - m14 - m24 - m34

w2 +
w3 +
w4

Σ

w1 w2

w3 w4

m12

84

Secure Aggregation

Local
updates
NOT
visible

Global
update
visible

w1 w2

w3 w4

m12

m13
m14

m24

m23

m34

w1 + m12 + m13+ m14

w2 - m12 + m23 + m24

w3 - m13 - m23 + m34

w4 - m14 - m24 - m34

w1 +
w2 +
w3 +
w4

Σ

w2 - m12 + m23 + m24

w3 - m13 - m23 + m34

w4 - m14 - m24 - m34

w2 +
w3 +
w4

Σ

w1 w2

w3 w4

m12

Primitive 1: Pairwise masking (all-to-all)

Primitive 2: Secret sharing (all-to-all)

Need for Dordis - 1

85

Problem: Pairwise masking and secret
sharing are necessary but expensive

Need for Dordis - 1

Secure Aggregation

86

Problem: Pairwise masking and secret
sharing are necessary but expensive

Secure Aggregation

Ro
un

d T
im

e
(h

)

0

0.25

0.5

0.75

1

participants in a round
32 48 64

0.048
0.044

0.042

0.903
0.686

0.428 SecAgg
Other

Need for Dordis - 1

87

Problem: Pairwise masking and secret
sharing are necessary but expensive

Secure Aggregation

Ro
un

d T
im

e
(h

)

0

0.25

0.5

0.75

1

participants in a round
32 48 64

0.048
0.044

0.042

0.903
0.686

0.428 SecAgg
Other

New algorithms exist:
• E.g., SecAgg+1

1Bell et al. “Secure Single-Server Aggregation with (Poly) Logarithmic Overhead”, In CCS ’20

Need for Dordis - 1

88

Problem: Pairwise masking and secret
sharing are necessary but expensive

Secure Aggregation

Ro
un

d T
im

e
(h

)

0

0.25

0.5

0.75

1

participants in a round
32 48 64

0.048
0.044

0.042

0.903
0.686

0.428 SecAgg
Other

1Bell et al. “Secure Single-Server Aggregation with (Poly) Logarithmic Overhead”, In CCS ’20

Need for Dordis - 1

New algorithms exist: improve asymptotically

• E.g., SecAgg+1, improve the complexity by
O(log N)/O(N) (N: # participants in a round)

89

Problem: Pairwise masking and secret
sharing are necessary but expensive

Secure Aggregation

Ro
un

d T
im

e
(h

)

0

0.25

0.5

0.75

1

participants in a round
32 48 64

0.048
0.044

0.042

0.903
0.686

0.428 SecAgg
Other

1Bell et al. “Secure Single-Server Aggregation with (Poly) Logarithmic Overhead”, In CCS ’20

Need for Dordis - 1

New algorithms exist: improve asymptotically

• E.g., SecAgg+1, improve the complexity by
O(log N)/O(N) (N: # participants in a round)

 NOT so helpful in FL where N = 101-102

90

Problem: Pairwise masking and secret
sharing are necessary but expensive

Secure Aggregation

Ro
un

d T
im

e
(h

)

0

0.25

0.5

0.75

1

participants in a round
32 48 64

0.048
0.044

0.042

0.903
0.686

0.428 SecAgg
Other

New algorithms exist: improve asymptotically

• E.g., SecAgg+1, improve the complexity by
O(log N)/O(N) (N: # participants in a round)

 NOT so helpful in FL where N = 101-102

1Bell et al. “Secure Single-Server Aggregation with (Poly) Logarithmic Overhead”, In CCS ’20

Need for Dordis - 1

Ro
un

d
Ti

m
e

(h
)

0
0.25
0.5

0.75
1

Participants in a round
32 48 64

0.71
0.530.37

0.95
0.73

0.47

SecAgg
SecAgg+

91

Differential Privacy

Need for Dordis - 2

92

Differential Privacy

Need for Dordis - 2

Each client adds an even share of the
target noise to its local model update

+

+

+

+

93

Differential Privacy

Need for Dordis - 2

Each client adds an even share of the
target noise to its local model update

+

+

+

+

Problem: Insufficient noise at the
global update upon client dropout

Noise

Dropout more severe Data footprint clearer

94

Differential Privacy

Need for Dordis - 2

Each client adds an even share of the
target noise to its local model update

+

+

+

+

Problem: Insufficient noise at the
global update upon client dropout

Noise

Data footprint clearerDropout more severe

95

Differential Privacy

Need for Dordis - 2

Each client adds an even share of the
target noise to its local model update

+

+

+

+

Problem: Insufficient noise at the
global update upon client dropout

Noise

Data footprint clearerDropout more severe

96

Differential Privacy

Need for Dordis - 2

Each client adds an even share of the
target noise to its local model update

+

+

+

+

Problem: Insufficient noise at the
global update upon client dropout

Noise

Data footprint clearerDropout more severe

97

Differential Privacy

Need for Dordis - 2

Each client adds an even share of the
target noise to its local model update

+

+

+

+

Problem: Insufficient noise at the
global update upon client dropout

Even worse when
accumulated
across rounds

Begin
1 2

End more
rounds

Noise

Data footprint clearerDropout more severe

98

Dordis - Overview

99

Dordis - Overview
Goal 1: Efficient secure aggregation

100

Dordis - Overview
Goal 1: Efficient secure aggregation

System-level optimization

101

Dordis - Overview

System-level optimization:
FL-specific pipeline parallelism

Efficiency

Substantial speedup for
general workloads

Goal 1: Efficient secure aggregation

102

Dordis - Overview

Efficiency

Goal 2: Dropout-resilient DP

Substantial speedup for
general workloads

System-level optimization:
FL-specific pipeline parallelism

Goal 1: Efficient secure aggregation

103

Dordis - Overview

Efficiency

Precise noise enforcement:
add-then-remove

Substantial speedup for
general workloads

System-level optimization:
FL-specific pipeline parallelism

Goal 1: Efficient secure aggregation Goal 2: Dropout-resilient DP

Resilience

Privacy preserved
regardless of client dropout

104

Dordis - Overview

Integration ResilienceEfficiency

Privacy preserved
regardless of client dropout

Seamlessly packed in one
comprehensive system

Substantial speedup for
general workloads

System-level optimization:
FL-specific pipeline parallelism

Goal 1: Efficient secure aggregation Goal 2: Dropout-resilient DP

Precise noise enforcement:
add-then-remove

105

Problem 1: Performance Bottleneck
System opt.: Utilize existing resources
client comp. server comp.comm.

106

Problem 1: Performance Bottleneck

client comp. server comp.comm.

System opt.: Utilize existing resources

Step Operation Resource
1 Clients encode updates client comp.
2 Clients generate security keys client comp.
3 Clients establish shared secrets client comp.
4 Clients mask encoded updates client comp.
5 Clients upload masked updates comm.
6 Server deals with dropout server comp.
7 Server computes the sum server comp.
8 Server updates global model server comp.
9 Server dispatches global model comm.
10 Clients decode global model client comp.
11 Clients use global model client comp.

107

Problem 1: Performance Bottleneck

client comp. server comp.comm.

System opt.: Utilize existing resources

Step Operation Resource Stage
1 Clients encode updates
2 Clients generate security keys client
3 Clients establish shared secrets comp.
4 Clients mask encoded updates
5 Clients upload masked updates comm. 2
6 Server deals with dropout
7 Server computes the sum server comp. 3
8 Server updates global model
9 Server dispatches global model comm. 4
10 Clients decode global model client
11 Clients use global model comp.

1

5

108

Problem 1: Performance Bottleneck

Potential approach:
• Pipeline parallelismclient comp. server comp.comm.

System opt.: Utilize existing resources

Step Operation Resource Stage
1 Clients encode updates
2 Clients generate security keys client
3 Clients establish shared secrets comp.
4 Clients mask encoded updates
5 Clients upload masked updates comm. 2
6 Server deals with dropout
7 Server computes the sum server comp. 3
8 Server updates global model
9 Server dispatches global model comm. 4
10 Clients decode global model client
11 Clients use global model comp.

1

5

109

Problem 1: Performance Bottleneck

Potential approach:
• Pipeline parallelism

Traditional ML: Free
data movement

Workflow

Diff. stages,
diff resources

client comp. server comp.comm.

System opt.: Utilize existing resources

Step Operation Resource Stage
1 Clients encode updates
2 Clients generate security keys client
3 Clients establish shared secrets comp.
4 Clients mask encoded updates
5 Clients upload masked updates comm. 2
6 Server deals with dropout
7 Server computes the sum server comp. 3
8 Server updates global model
9 Server dispatches global model comm. 4
10 Clients decode global model client
11 Clients use global model comp.

1

5

110

Problem 1: Performance Bottleneck

Potential approach:
• Pipeline parallelism

Traditional ML: Free
data movement

FL: Data movement
restricted due to privacy

Challenge: New constraints in
optimizing pipeline parallelism

WorkflowWorkflow

Diff. stages, same resource
client comp. server comp.comm.

System opt.: Utilize existing resources

Step Operation Resource Stage
1 Clients encode updates
2 Clients generate security keys client
3 Clients establish shared secrets comp.
4 Clients mask encoded updates
5 Clients upload masked updates comm. 2
6 Server deals with dropout
7 Server computes the sum server comp. 3
8 Server updates global model
9 Server dispatches global model comm. 4
10 Clients decode global model client
11 Clients use global model comp.

1

5

Diff. stages,
diff resources

111

Problem 1: Performance Bottleneck
Solution: pipeline parallelism tailored for FL

112

Problem 1: Performance Bottleneck
Solution: pipeline parallelism tailored for FL

1. Task partitioning: enable parallelism

113

Problem 1: Performance Bottleneck
Solution: pipeline parallelism tailored for FL

1. Task partitioning: enable parallelism
• # Subtasks: decision variable to optimize

114

Problem 1: Performance Bottleneck
Solution: pipeline parallelism tailored for FL

1. Task partitioning: enable parallelism
• # Subtasks: decision variable to optimize

Time

Original
Time

Subtasks = 2 # Subtasks = 3

Time
Different time

Or

115

Problem 1: Performance Bottleneck
Solution: pipeline parallelism tailored for FL

1. Task partitioning: enable parallelism
• # Subtasks: decision variable to optimize

Time

Original
Time

Subtasks = 2 # Subtasks = 3

Time

2. Constrained optimization

m* = arg min
m∈N+

fa,m

fs,c = bs,c + lss . t .

os,c = {0, if s = 0,
fs−1,c

bs,c = max{os,c, rs,c}

rs,c =
0, if s = 0 and c = 0,
fq,m or ⊥ , if s ≠ 0 and c = 0,
fs,c−1, otherwise

Please find more in the paper :)

Optimal # subtasks

Different time

The FL constraintOr

116

Dordis generally boosts performance
FEMNIST

@ResNet18

CIFAR-10
@ResNet18

CIFAR-10
@VGG-19

Larger
model

More
participants

117

Dordis generally boosts performance
FEMNIST

@ResNet18

CIFAR-10
@ResNet18

CIFAR-10
@VGG-19

Dropout rate 0 10% 20% 30%

118

Dordis generally boosts performance
Ti

m
e

(m
in)

0
25
50

SecAgg

48.46

Ti
m

e
(m

in)

0
16
32

Agg. method
SecAgg

30.52

Orig

Ti
m

e
(m

in)

0
7

14

SecAgg

13.35

Orig → Plain sequential execution

FEMNIST
@ResNet18

CIFAR-10
@ResNet18

CIFAR-10
@VGG-19

0
40
80

SecAgg

72.06

0
20
40

Agg. method
SecAgg

37.53

0
8.5
17

SecAgg

16.74

0
40
80

SecAgg

76.8

0
20
40

Agg. method
SecAgg

36.26

0
8.5
17

SecAgg

16.23

0
40
80

SecAgg

78.74

0
18
36

Agg. method
SecAgg

35.46

0
8

16

SecAgg

15.76

Dropout rate 0 10% 20% 30%

119

Dordis generally boosts performance
Ti

m
e

(m
in)

0
25
50

SecAgg

27.87
48.46

Ti
m

e
(m

in)

0
16
32

Agg. method
SecAgg

14.52
30.52

Orig
Dordis

Ti
m

e
(m

in)

0
7

14

SecAgg

9.78
13.35

Orig → Plain sequential execution

FEMNIST
@ResNet18

CIFAR-10
@ResNet18

CIFAR-10
@VGG-19

0
40
80

SecAgg
36.96

72.06

0
20
40

Agg. method
SecAgg

16.56
37.53

0
8.5
17

SecAgg

12.9216.74

0
40
80

SecAgg

41.14
76.8

0
20
40

Agg. method
SecAgg

15.72
36.26

0
8.5
17

SecAgg

12.616.23

0
40
80

SecAgg

42.97
78.74

0
18
36

Agg. method
SecAgg

15.68
35.46

0
8

16

SecAgg

12.5915.76

Dropout rate 0 10% 20% 30%

Dordis accelerates by up to 2.4× across different
participant scale, model size, dropout situations

120

Dordis generally boosts performance
Ti

m
e

(m
in)

0
25
50

SecAgg SecAgg+
20.5527.87 39.6148.46

Ti
m

e
(m

in)

0
16
32

Agg. method
SecAgg SecAgg+

15.2814.52
29.0530.52

Orig
Dordis

Ti
m

e
(m

in)

0
7

14

SecAgg SecAgg+

9.489.78 12.813.35

Orig → Plain sequential execution

FEMNIST
@ResNet18

CIFAR-10
@ResNet18

CIFAR-10
@VGG-19

0
40
80

SecAgg SecAgg+
29.0936.96 51.36

72.06

0
20
40

Agg. method
SecAgg SecAgg+

18.4516.56
35.2337.53

0
8.5
17

SecAgg SecAgg+

12.4912.92 15.8316.74

0
40
80

SecAgg SecAgg+
32.6841.14 55.63

76.8

0
20
40

Agg. method
SecAgg SecAgg+

15.0515.72
33.836.26

0
8.5
17

SecAgg SecAgg+

12.0412.6 15.2416.23

0
40
80

SecAgg SecAgg+
33.2742.97 55.77

78.74

0
20
40

Agg. method
SecAgg SecAgg+

14.7615.68
33.1535.46

0
8

16

SecAgg SecAgg+

10.1412.59 14.7315.76

Dropout rate 0 10% 20% 30%

Dordis accelerates by up to 2.4× across different
participant scale, model size, dropout situations, and aggregation methods

121

Problem 2: Noise Deficiency
Intuition - Data privacy

122

Problem 2: Noise Deficiency
Intuition - Data privacy
• Noise should never be insufficient

O
riginal

Each client adds Noise in global update

1/4
1 3/4

1 client drops0 client drops

123

Problem 2: Noise Deficiency
Intuition - Data privacy
• Noise should never be insufficient

Proactively add more noise than needed
→

O
riginal

Each client adds Noise in global update

1 client drops0 client drops

Im
proved

1/4

1/3

1 3/4

124

Problem 2: Noise Deficiency
Intuition - Data privacy
• Noise should never be insufficient

Proactively add more noise than needed
→

O
riginal

Each client adds Noise in global update

1 client drops0 client drops

Im
proved

1/4

1/3

1 3/4

1

125

Problem 2: Noise Deficiency
Intuition - Data privacy
• Noise should never be insufficient

Proactively add more noise than needed
→

O
riginal

Each client adds Noise in global update

1 client drops0 client drops

Im
proved

1/4

1/3

1 3/4

11+1/4

Intuition - Model Utility
• The less noise the better remove

redundant noise when dropout is settled
→

126

Problem 2: Noise Deficiency
Intuition - Data privacy
• Noise should never be insufficient

Proactively add more noise than needed
→

O
riginal

Each client adds Noise in global update

1 client drops0 client drops

Im
proved

Intuition - Model Utility
• The less noise the better remove

redundant noise when dropout is settled
→

Ac
cu

ra
cy

(%

)

0
17.5

35
52.5

70

CIFAR10 CIFAR100

5.9

56.3
32.7

60.7

Original Overkilled
1/4

1/3

1 3/4

11+1/4

127

Problem 2: Noise Deficiency
Potential approach

• Noise decomposition during addition
Each client adds Noise in global update

O
riginal

1 client drops0 client drops

1/3

11+1/4

128

Problem 2: Noise Deficiency
Potential approach

• Noise decomposition during addition
Each client adds Noise in global update

O
riginal

Im
proved

1 client drops0 client drops

1/3

1/4 + 1/12

1

1

1+1/4

129

Problem 2: Noise Deficiency
Potential approach

• Noise decomposition during addition
Each client adds Noise in global update

O
riginal

Im
proved

Clients can send its added
to the server for removal

1 client drops0 client drops

1/3

1/4 + 1/12

1

1 1

1+1/4

130

Problem 2: Noise Deficiency
Potential approach

• Noise decomposition during addition
Each client adds Noise in global update

O
riginal

Im
proved

Clients can send its added
to the server for removal

1 client drops0 client drops

1/3

1/4 + 1/12

1

1 1

1+1/4

Solution: Generalized design
for noise decomposition

131

Problem 2: Noise Deficiency
Potential approach

• Noise decomposition during addition
Each client adds Noise in global update

O
riginal

Im
proved

Clients can send its added
to the server for removal

1 client drops0 client drops

1/3

1/4 + 1/12

1

1 1

1+1/4

Each client adds Noise in global update
1 drops0 drops 2 drops

1/4 +
1/12+1/6

E.g., 4 clients again, but tolerate up to 2 dropped clients

111

Solution: Generalized design
for noise decomposition

132

Closed-form method
• Noise addition: Decompose Client ’s added noise

 into components: ,

, and

• Noise removal: when clients drop out, the noise
components contributed by the surviving clients

 with the index becomes excessive
and is removed by the server

i

ni ∼ χ(σ2
*

|S| − t) t + 1 ni =
t

∑
k=0

ni,k

ni,0 ∼ χ(σ2
*

|S|) ni,k ∼ χ(σ2
*

(|S| − k + 1)(|S| − k))
(k ∈ [t])

|D |
ni,k

i ∈ S∖D k > |D |

Problem 2: Noise Deficiency

133

Dordis enforces the target noise
Closed-form method
• Noise addition: Decompose Client ’s added noise

 into components: ,

, and

• Noise removal: when clients drop out, the noise
components contributed by the surviving clients

 with the index becomes excessive
and is removed by the server

i

ni ∼ χ(σ2
*

|S| − t) t + 1 ni =
t

∑
k=0

ni,k

ni,0 ∼ χ(σ2
*

|S|) ni,k ∼ χ(σ2
*

(|S| − k + 1)(|S| − k))
(k ∈ [t])

|D |
ni,k

i ∈ S∖D k > |D |

Guarantee: Dordis enforces the
target noise when all are semi-honest

134

Dordis enforces the target noise
Closed-form method
• Noise addition: Decompose Client ’s added noise

 into components: ,

, and

• Noise removal: when clients drop out, the noise
components contributed by the surviving clients

 with the index becomes excessive
and is removed by the server

i

ni ∼ χ(σ2
*

|S| − t) t + 1 ni =
t

∑
k=0

ni,k

ni,0 ∼ χ(σ2
*

|S|) ni,k ∼ χ(σ2
*

(|S| − k + 1)(|S| − k))
(k ∈ [t])

|D |
ni,k

i ∈ S∖D k > |D |

Please find more in the paper :)

Guarantee: Dordis enforces the target
noise when all are semi-honest, or when

even the server is malicious

135

Dordis enforces the target noise
Closed-form method
• Noise addition: Decompose Client ’s added noise

 into components: ,

, and

• Noise removal: when clients drop out, the noise
components contributed by the surviving clients

 with the index becomes excessive
and is removed by the server

i

ni ∼ χ(σ2
*

|S| − t) t + 1 ni =
t

∑
k=0

ni,k

ni,0 ∼ χ(σ2
*

|S|) ni,k ∼ χ(σ2
*

(|S| − k + 1)(|S| − k))
(k ∈ [t])

|D |
ni,k

i ∈ S∖D k > |D |

Please find more in the paper :)

Ti
m

e
(m

in)

0
17.5

35
52.5

70

36.68
16.08

61.71

30.52
13.35

48.46

Original Dordis

Dordis runtime overhead ≤34%

Guarantee: Dordis enforces the target
noise when all are semi-honest, or when

even the server is malicious

FEMNIST@
ResNet18

CIFAR10@
ResNet18

CIFAR10@
ResNet18

136

Dordis: Results summary

Integration ResilienceEfficiency

Seamlessly packed in one
comprehensive system

Privacy preserved with target
noise precisely enforced

regardless of client dropout

Substantial speedup up to
2.4× for general workloads

github.com/SamuelGong/Dordis

http://github.com/SamuelGong/Dordis

137

Privacy-Enhancing
Technique

Privacy Guarantee

Federated Learning

Data kept on premises

Secure Aggregation Differential Privacy

Global update leaks
little about any client

Local updates unseen

Third work: Lotto1

Stragglers
bottleneck time

Primitives heavy in
comp. and comm.

Client dropout yields
insufficient noise

Only or mostly works with honest participantsCan be a
dishonest majority

Efficiency
Time-to-accuracy…

xPrivacy
Worst-case defense…

1Jiang et al. “Lotto: Secure Participant Selection against Adversarial Servers in Federated Learning”, In Security ’24

138

Need for Lotto

Secure Aggregation Differential Privacy

Dishonesty proportion

Pr
iv

ac
y

ac
hie

ve
d

Ideal (global update w/
full noise)

139

Need for Lotto

Secure Aggregation Differential Privacy

Dishonesty proportion

Pr
iv

ac
y

ac
hie

ve
d

Ideal (global update w/
full noise)

DP Failure (global update w/
insufficient noise)

140

Need for Lotto

Secure Aggregation Differential Privacy

Dishonesty proportion

Pr
iv

ac
y

ac
hie

ve
d

Ideal (global update w/
full noise)

DP Failure (global update w/
insufficient noise)

SecAgg Failure (local
update w/ nearly no noise)

141

Need for Lotto

Secure Aggregation Differential Privacy

Assumption: honest participants

Dishonesty proportion

Pr
iv

ac
y

ac
hie

ve
d

Ideal (global update w/
full noise)

DP Failure (global update w/
insufficient noise)

SecAgg Failure (local
update w/ nearly no noise)

142

Need for Lotto

Secure Aggregation Differential Privacy Federated Learning

Assumption: honest participants

Dishonesty proportion

Pr
iv

ac
y

ac
hie

ve
d

Ideal (global update w/
full noise)

DP Failure (global update w/
insufficient noise)

SecAgg Failure (local
update w/ nearly no noise)

143

Need for Lotto

Secure Aggregation Differential Privacy Federated Learning

Assumption: honest participants

Population (104 -108)

Dishonesty proportion

Pr
iv

ac
y

ac
hie

ve
d

Ideal (global update w/
full noise)

DP Failure (global update w/
insufficient noise)

SecAgg Failure (local
update w/ nearly no noise)

144

Need for Lotto

Secure Aggregation Differential Privacy Federated Learning

Selected participants (101 -102)

Assumption: honest participants

Population (104 -108)

Dishonesty proportion

Pr
iv

ac
y

ac
hie

ve
d

Ideal (global update w/
full noise)

DP Failure (global update w/
insufficient noise)

SecAgg Failure (local
update w/ nearly no noise)

145

Need for Lotto

Secure Aggregation Differential Privacy Federated Learning

• Random: uniform chance

Assumption: honest participants

Population (104 -108)

Dishonesty proportion

Pr
iv

ac
y

ac
hie

ve
d

Ideal (global update w/
full noise)

DP Failure (global update w/
insufficient noise)

SecAgg Failure (local
update w/ nearly no noise) Selected participants (101 -102)

146

Need for Lotto

Secure Aggregation Differential Privacy Federated Learning

• Random: uniform chance

• Informed: “best-performing” clients are preferred
(e.g., high speed and/or rich data)

Assumption: honest participants

Population (104 -108)

Dishonesty proportion

Pr
iv

ac
y

ac
hie

ve
d

Ideal (global update w/
full noise)

DP Failure (global update w/
insufficient noise)

SecAgg Failure (local
update w/ nearly no noise) Selected participants (101 -102)

147

Need for Lotto

Secure Aggregation Differential Privacy Federated Learning

Problem: participant selection can be
manipulated by the malicious server

😇 😈 😇 😇😇 😈 😈 😇 😇 😇

😇 😈😈 😈

Assumption: honest participants

Population (104 -108)

Dishonesty proportion

Pr
iv

ac
y

ac
hie

ve
d

Ideal (global update w/
full noise)

DP Failure (global update w/
insufficient noise)

SecAgg Failure (local
update w/ nearly no noise) Selected participants (101 -102)

148

Lotto - Overview

149

Lotto - Overview
No peer-to-peer network: all traffic relayed by the server

150

Lotto - Overview

Threat model: malicious server colluding with
some clients, and a public key infrastructure (PKI)

No peer-to-peer network: all traffic relayed by the server

151

Lotto - Overview

Functionality

Support both random and
informed selection

No peer-to-peer network: all traffic relayed by the server

Threat model: malicious server colluding with
some clients, and a public key infrastructure (PKI)

152

Lotto - Overview

SecurityFunctionality

Theoretical guarantee of
preventing manipulation

No peer-to-peer network: all traffic relayed by the server

Support both random and
informed selection

Threat model: malicious server colluding with
some clients, and a public key infrastructure (PKI)

153

Lotto - Overview

Security EfficiencyFunctionality

Theoretical guarantee of
preventing manipulation

Mild runtime overhead
with no network cost

No peer-to-peer network: all traffic relayed by the server

Support both random and
informed selection

Threat model: malicious server colluding with
some clients, and a public key infrastructure (PKI)

154

Problem: Random selection

155

Problem: Random selection

#1

#2

#3

… …

Selection criteria: <3

Randomness

RFpk1(2) = 9

RFpk2(2) = 1

RFpk3(2) = 7

Current
round: 2

Public keys

156

Problem: Random selection

#1

#2

#3

… …

Select

Yes

No

No

…

Selection criteria: <3

Randomness

Current
round: 2

RFpk1(2) = 9

RFpk2(2) = 1

RFpk3(2) = 7

157

#1

#2

#3

… …

Select

Yes

No

No

…

Select

Yes

No

Selection criteria: <3

Does
NOT matter.

…

For dishonest majority

Problem: Random selection

Randomness Randomness

No

Current
round: 2

RFpk1(2) = 9

RFpk2(2) = 1

RFpk3(2) = 7

158

#1

#2

#3

… …

Select

Yes

No

No

…

Select

Yes

No

Selection criteria: <3

…

Potential approach:
• Outcome verification

For dishonest majority

Does
NOT matter.

Randomness Randomness

Problem: Random selection

No

Current
round: 2

RFpk1(2) = 9

RFpk2(2) = 1

RFpk3(2) = 7

159

#1

#2

#3

… …

Select

Yes

No

No

…

Select

Yes

No

Selection criteria: <3

…

Potential approach:
• Outcome verification

For dishonest majority

I select #2

#2 RFpk2(2) < 3?

RFpk2(2) < 3?RFpk2(2) < 3?

Does
NOT matter.

Randomness Randomness

Problem: Random selection

No

Current
round: 2

RFpk1(2) = 9

RFpk2(2) = 1

RFpk3(2) = 7

160

#1

#2

#3

… …

Select

Yes

No

No

…

Randomness Select

Yes

No

No

Selection criteria: <3

…

Potential approach:
• Outcome verification
• Only within participants (101 - 102)

For dishonest majority

I select #2, #4, #5, #6

#2 #4

#5 #6

Does
NOT matter.

Randomness

Problem: Random selection
Current
round: 2

Necessary

RFpk1(2) = 9

RFpk2(2) = 1

RFpk3(2) = 7

161

Problem: Random selection

What is achieved:
Each participant
 sees a list of peers

I select #2, #4, #5, #6

#2 #4

#5 #6

Necessary

Potential approach:
• Outcome verification
• Only within participants (101 - 102)

162

Problem: Random selection

What is achieved:
Each participant
 sees a list of peers who
 presents only by chance.

I select #2, #4, #5, #6

#2 #4

#5 #6

Necessary

Potential approach:
• Outcome verification
• Only within participants (101 - 102)

163

Problem: Random selection

What is achieved:
Each participant
 sees a list of peers who
 presents only by chance.

I select #2, #4, #5, #6

#2 #4

#5 #6

Necessary

Selection criteria: <3
E.g.,

Output range: [0, 10)
= 3/10

Potential approach:
• Outcome verification
• Only within participants (101 - 102)

164

Problem: Random selection

What is achieved:
Each participant
 sees a list of peers who
 presents only by chance.

Selection criteria: <3
E.g.,

Output range: [0, 10)
= 3/10

165

Problem: Random selection

What is achieved:
Each participant
 sees a list of peers who
 presents only by chance.

What happens to the absent?

166

Problem: Random selection

What is achieved:
Each participant
 sees a list of peers who
 presents only by chance.

Problem: The server may arbitrarily
ignore honest clients

😇 😈😇 😇😇 😈 😈 😇 😇 😇

😇 😈😇😇😇 😈 😈 😇 😇 😇

😇 😈😇 😇😇 😈😈 😇 😇 😇

😈😇 😈 😈

Ignore before selection

Selected
What happens to the absent?

167

Problem: Random selection

What is achieved:
Each participant
 sees a list of peers who
 presents only by chance.

Problem: The server may arbitrarily
ignore honest clients

😇 😈😇 😇😇 😈 😈 😇 😇 😇

😇 😈😇😇😇 😈 😈 😇 😇 😇

😇 😈😇 😇😇 😈😈 😇 😇 😇

😈😇 😈 😈

Ignore before selection Ignore after selection

😇 😈😇 😇😇 😈 😈 😇 😇 😇

😇 😈😇😇😇 😈 😈 😇 😇 😇

😇 😈😇 😇😇 😈😈 😇 😇 😇

😈😇 😈 😈😇 😇 😇 😇 😇Selected
What happens to the absent?

168

Problem: Random selection

What is achieved:
Each participant
 sees a list of peers who
 presents only by chance.

Problem: The server may arbitrarily
ignore honest clients

😇 😈😇 😇😇 😈 😈 😇 😇 😇

😇 😈😇😇😇 😈 😈 😇 😇 😇

😇 😈😇 😇😇 😈😈 😇 😇 😇

😈😇 😈 😈

Ignore before selection Ignore after selection

😇 😈😇 😇😇 😈 😈 😇 😇 😇

😇 😈😇😇😇 😈 😈 😇 😇 😇

😇 😈😇 😇😇 😈😈 😇 😇 😇

😈😇 😈 😈😇 😇 😇 😇 😇Selected

Unbounded advantage in growing dishonesty

What happens to the absent?

169

Problem: Random selection

What is achieved:
Each participant
 sees a list of peers who
 presents only by chance.

What happens to the absent?

Solution: Enforce a large enough list
and a small enough chance.

170

Problem: Random selection

What is achieved:
Each participant
 sees a list of peers who
 presents only by chance.

What happens to the absent?

Example
• len(list): ≥ 200

• Chance: ≤ 0.1%

Solution: Enforce a large enough list
and a small enough chance.

171

Problem: Random selection

What is achieved:
Each participant
 sees a list of peers who
 presents only by chance.

0.99

Example
• len(list): ≥ 200

• Chance: ≤ 0.1%

😈 😈😈 …

≤ 50%

Selected
What happens to the absent?

Solution: Enforce a large enough list
and a small enough chance.

172

Problem: Random selection

What is achieved:
Each participant
 sees a list of peers who
 presents only by chance.

The absent will not get
arbitrarily ignored

Example
• len(list): ≥ 200

• Chance: ≤ 0.1%

😈 😈😈 …Selected …😇 😇 😇

Solution: Enforce a large enough list
and a small enough chance.

0.99

≤ 50% ≥ 50%

173

Problem: Random selection

What is achieved:
Each participant
 sees a list of peers who
 presents only by chance.

The absent will not get
arbitrarily ignored

Example
• len(list): ≥ 200

• Chance: ≤ 0.1%

😈 😈😈 …Selected …😇 😇 😇

Solution: Enforce a large enough list
and a small enough chance.

0.99

≤ 50% ≥ 50%

174

Problem: Random selection

What is achieved:
Each participant
 sees a list of peers who
 presents only by chance.

The absent will not get
arbitrarily ignored

Problem: Random selection

Predictable
to server?

Examples: #2 will be selected as RFpk2(2) = 1 < 3.

Public keys

Round index

Public

Public

175

Problem: Random selection

What is achieved:
Each participant
 sees a list of peers who
 presents only by chance.

The absent will not get
arbitrarily ignored

Problem: Random selection

#2

Focused hacking

Examples: #2 will be selected as RFpk2(2) = 1 < 3.
It’s honest, so the server may grow its advantage by

Predictable
to server?

Problem: Attack surfaces enlarged!

176

Problem: Random selection

What is achieved:
Each participant
 sees a list of peers who
 presents only by chance.

The absent will not get
arbitrarily ignored

Problem: Random selection

#2 vs

Random compromise

?

Focused hacking

Examples: #2 will be selected as RFpk2(2) = 1 < 3.
It’s honest, so the server may grow its advantage by

Predictable
to server?

Problem: Attack surfaces enlarged!

177

Problem: Random selection

What is achieved:
Each participant
 sees a list of peers who
 presents only by chance.

The absent will not get
arbitrarily ignored

Problem: Random selection

Solution: Self-sampling with
verifiable random functions (VRFs)1,2.

1Micali et al. “Verifiable random functions”, In FOCS ’99
2Dodis et al. “A verifiable random function with short proofs and keys”, In PKC ’05

Evaluation: VRF.evalsk2(2) = (1, π2) (output, proof)

#2

Secret key

Predictable
to server?

178

Problem: Random selection

What is achieved:
Each participant
 sees a list of peers who
 presents only by chance.

The absent will not get
arbitrarily ignored

Problem: Random selection

1Micali et al. “Verifiable random functions”, In FOCS ’99
2Dodis et al. “A verifiable random function with short proofs and keys”, In PKC ’05

Evaluation: VRF.evalsk2(2) = (1, π2) (output, proof)

#2

Solution: Self-sampling with
verifiable random functions (VRFs)1,2.

Predictable
to server?

179

Problem: Random selection

What is achieved:
Each participant
 sees a list of peers who
 presents only by chance.

The absent will not get
arbitrarily ignored

Problem: Random selection

1Micali et al. “Verifiable random functions”, In FOCS ’99
2Dodis et al. “A verifiable random function with short proofs and keys”, In PKC ’05

Evaluation: VRF.evalsk2(2) = (1, π2) (output, proof)
Verification: VRF.verpk2(2, 1, π2) = True

#2

Public key

Solution: Self-sampling with
verifiable random functions (VRFs)1,2.

Predictable
to server?

180

Problem: Random selection

What is achieved:
Each participant
 sees a list of peers who
 presents only by chance.

The absent will not get
arbitrarily ignored

Problem: Random selection

1Micali et al. “Verifiable random functions”, In FOCS ’99
2Dodis et al. “A verifiable random function with short proofs and keys”, In PKC ’05

#2
I self-sample
with (1, π2)

Unpredictable
to server

Solution: Self-sampling with
verifiable random functions (VRFs)1,2.

Evaluation: VRF.evalsk2(2) = (1, π2) (output, proof)
Verification: VRF.verpk2(2, 1, π2) = True

181

Problem: Random selection

What is achieved:
Each participant
 sees a list of peers who
 presents only by chance.

The absent will not get
arbitrarily ignored

Problem: Random selection

1Micali et al. “Verifiable random functions”, In FOCS ’99
2Dodis et al. “A verifiable random function with short proofs and keys”, In PKC ’05

#2
I self-sample
with (1, π2) #4

#5 #6

ver = True?

ver = True?ver = True?

Unpredictable
to server

Solution: Self-sampling with
verifiable random functions (VRFs)1,2.

Evaluation: VRF.evalsk2(2) = (1, π2) (output, proof)
Verification: VRF.verpk2(2, 1, π2) = True

182

Problem: Random selection

What is achieved:
Each participant
 sees a list of peers who
 presents only by chance.

The absent will not get
arbitrarily ignored

Unpredictable
to server

Actual participants
throughout the training?

183

Problem: Random selection

What is achieved:
Each participant
 sees a list of peers who
 presents only by chance.

The absent will not get
arbitrarily ignored

Unpredictable
to server

Problem: The server may not follow.Actual participants
throughout the training?

Involve non-selected dishonest ones

😈😇 😈 😈😇 😇 😇 😇 😇😈😈 …

184

Problem: Random selection

What is achieved:
Each participant
 sees a list of peers who
 presents only by chance.

The absent will not get
arbitrarily ignored

Unpredictable
to server

Problem: The server may not follow.Actual participants
throughout the training?

Involve non-selected dishonest ones

😈😇 😈 😈😇 😇 😇 😇 😇😈😈 …

😈😇 😈 😈😇 😇 😇 😇 😇

Disregard selected honest ones

185

Problem: Random selection

What is achieved:
Each participant
 sees a list of peers who
 presents only by chance.

The absent will not get
arbitrarily ignored

Unpredictable
to server

Actual participants
throughout the training?

1Thus also of distributed DP (other privacy-enhancing techniques may not have this feature and this is left for
future work).

Solution: Utilize existing secure
semantics of secure aggregation1

186

Problem: Random selection

What is achieved:
Each participant
 sees a list of peers who
 presents only by chance.

The absent will not get
arbitrarily ignored

Unpredictable
to server

Actual participants
throughout the training?

1Thus also of distributed DP (other privacy-enhancing techniques may not have this feature and this is left for
future work).

• Commitment: necessary info shared only once

😈😇 😈 😈😇 😇 😇 😇 😇

…

Solution: Utilize existing secure
semantics of secure aggregation1

187

Problem: Random selection

What is achieved:
Each participant
 sees a list of peers who
 presents only by chance.

The absent will not get
arbitrarily ignored

Unpredictable
to server

Actual participants
throughout the training?

1Thus also of distributed DP (other privacy-enhancing techniques may not have this feature and this is left for
future work).

😈😇 😈 😈😇 😇 😇 😇 😇

…

😈😈 …

XX

No privacy risk

Solution: Utilize existing secure
semantics of secure aggregation1

• Commitment: necessary info shared only once

188

Problem: Random selection

What is achieved:
Each participant
 sees a list of peers who
 presents only by chance.

The absent will not get
arbitrarily ignored

Unpredictable
to server

Actual participants
throughout the training?

1Thus also of distributed DP (other privacy-enhancing techniques may not have this feature and this is left for
future work).

😈😇 😈 😈😇 😇 😇 😇 😇

…

😈😈 …

XX

No privacy risk

Solution: Utilize existing secure
semantics of secure aggregation1

• Commitment: necessary info shared only once

• Consistency check: to know remaining participants

😈😇 😈 😈😇 😇 😇 😇 😇

189

Problem: Random selection

What is achieved:
Each participant
 sees a list of peers who
 presents only by chance.

The absent will not get
arbitrarily ignored

Unpredictable
to server

1Thus also of distributed DP (other privacy-enhancing techniques may not have this feature and this is left for
future work).

😈😇 😈 😈😇 😇 😇 😇 😇

…

😈😈 …

XX

No privacy risk

Solution: Utilize existing secure
semantics of secure aggregation1

• Commitment: necessary info shared only once

• Consistency check: to know remaining participants

😈😇 😈 😈😇 😇 😇 😇 😇Abort

Actual participants
throughout the training

190

Problem: Random selection

What is achieved:
Each participant
 sees a list of peers who
 presents only by chance.

The absent will not get
arbitrarily ignored

Unpredictable
to server

Actual participants
throughout the training

1Thus also of distributed DP (other privacy-enhancing techniques may not have this feature and this is left for
future work).

Minor issues:
• Fixed sample size: over-selection
• Consistent round index: uniqueness check
…

Please find more in the paper :)

191

Problem: Informed selection

192

Problem: Informed selection

#1

#2

#3

… …

(Est.) latency

Example

1.2s

2.7s

1.6s

193

Problem: Informed selection

#1

#2

#3

… …

Select

No

Yes

Yes

…

Selection criteria: the fastest For dishonest majority

(Est.) latency

Example

1.2s

2.7s

1.6s

194

Problem: Informed selection

#1

#2

#3

… …

Select

No

Yes

Yes

…

Select

Yes

No

Selection criteria: the fastest

…

For dishonest majority

Does
NOT matter.

(Est.) latency (Est.) latency

No

Example

1.2s

2.7s

1.6s

195

Problem: Informed selection

#1

#2

#3

… …

Select

No

Yes

Yes

…

Select

Yes

No

Selection criteria: the fastest

…

For dishonest majority

Does
NOT matter.

(Est.) latency (Est.) latency

No

Example

1.2s

2.7s

1.6s

Major Challenge: Client metrics are
hard to verify by honest clients

196

Problem: Informed selection

#1

#2

#3

… …

Select

No

Yes

Yes

…

Select

Yes

No

Selection criteria: the fastest

…

For dishonest majority

Does
NOT matter.

(Est.) latency (Est.) latency

No

Example

1.2s

2.7s

1.6s

Metrics are fake

😈😇 😇 😈

Major Challenge: Client metrics are
hard to verify by honest clients

197

Problem: Informed selection

#1

#2

#3

… …

Select

No

Yes

Yes

…

Select

Yes

No

Selection criteria: the fastest

…

For dishonest majority

Does
NOT matter.

(Est.) latency (Est.) latency

No

Example

1.2s

2.7s

1.6s

Major Challenge: Client metrics are
hard to verify by honest clients

Metrics are fake Metrics are true, but…

😈😇 😇 😈 😈😇 😇 😈

IP11 IPXIP16 IP16

198

Problem: Informed selection

#1

#2

#3

… …

Select

No

Yes

Yes

…

Select

Yes

No

Selection criteria: the fastest

…

For dishonest majority

Does
NOT matter.

(Est.) latency (Est.) latency

No

Example

1.2s

2.7s

1.6s

Metrics are fake Metrics are true, but…

😈😇 😇 😈 😈😇 😇 😈

IP11 IPXIP16 IP16

Solution: Approximate inform
selection by random selection

Please find more in the paper :)

Major Challenge: Client metrics are
hard to verify by honest clients

199

Lotto prevents arbitrary manipulation

200

Lotto prevents arbitrary manipulation
What can be proven:

😇 😈😇 😇😇 😈 😈 😇 😇 😇

😇 😈😇😇😇 😈 😈 😇 😇 😇

😇 😈😇 😇😇 😈😈 😇 😇 😇

Participants😈😇 😈 😈😇 😇 😇 😇 😇Population
Lotto

201

Lotto prevents arbitrary manipulation
What can be proven:

😇 😈😇 😇😇 😈 😈 😇 😇 😇

😇 😈😇😇😇 😈 😈 😇 😇 😇

😇 😈😇 😇😇 😈😈 😇 😇 😇

Participants😈😇 😈 😈😇 😇 😇 😇 😇Population

Base rate of dishonest clients Fraction of dishonest clients

Lotto

Align

w/ high prob.

202

Lotto prevents arbitrary manipulation
What can be proven:

😇 😈😇 😇😇 😈 😈 😇 😇 😇

😇 😈😇😇😇 😈 😈 😇 😇 😇

😇 😈😇 😇😇 😈😈 😇 😇 😇

Participants😈😇 😈 😈😇 😇 😇 😇 😇Population

Base rate of dishonest clients Fractions of dishonest clients

Lotto

Align

w/ high prob.

Example
• Population: 200,000

• Dishonesty base rate: 0.005

203

Lotto prevents arbitrary manipulation
What can be proven:

😇 😈😇 😇😇 😈 😈 😇 😇 😇

😇 😈😇😇😇 😈 😈 😇 😇 😇

😇 😈😇 😇😇 😈😈 😇 😇 😇

Participants😈😇 😈 😈😇 😇 😇 😇 😇Population

Base rate of dishonest clients Fractions of dishonest clients

Lotto

Example
• Population: 200,000

• Dishonesty base rate: 0.005
• Target participants: 200

Align

w/ high prob.

204

Lotto prevents arbitrary manipulation
What can be proven:

😇 😈😇 😇😇 😈 😈 😇 😇 😇

😇 😈😇😇😇 😈 😈 😇 😇 😇

😇 😈😇 😇😇 😈😈 😇 😇 😇

Participants😈😇 😈 😈😇 😇 😇 😇 😇Population

Base rate of dishonest clients Fractions of dishonest clients

Lotto

Align

w/ high prob.

Example
• Population: 200,000

• Dishonesty base rate: 0.005
• Target participants: 200

205

Lotto prevents arbitrary manipulation
What can be proven:

😇 😈😇 😇😇 😈 😈 😇 😇 😇

😇 😈😇😇😇 😈 😈 😇 😇 😇

😇 😈😇 😇😇 😈😈 😇 😇 😇

Participants😈😇 😈 😈😇 😇 😇 😇 😇Population

Base rate of dishonest clients Fractions of dishonest clients

Lotto

Align

w/ high prob.

Example
• Population: 200,000

• Dishonesty base rate: 0.005
• Target participants: 200

206

Lotto induces no or mild overhead

207

Lotto induces no or mild overhead

1Random selection as an example. See results for informed selection in the paper.

FEMNIST
@CNN

OpenImage
@MobileNet

Reddit
@Albert

Ti
m

e
(m

in)
0

2

4

100 400 700

Ti
m

e
(m

in)

0

3.5

7

100 400 700

Ti
m

e
(m

in)

0

25

50

Population size
100 400 700

208

Lotto induces no or mild overhead

1Random selection as an example. See results for informed selection in the paper.

Ti
m

e
(m

in)
0

2

4

100 400 700

3.46
2.56

1.76
Ti

m
e

(m
in)

0

3.5

7

100 400 700

5.65
4.35

3.06

Ti
m

e
(m

in)

0

25

50

Population size
100 400 700

40.06
26.94

13

FEMNIST
@CNN

OpenImage
@MobileNet

Reddit
@Albert

w/o Lotto

209

Lotto induces no or mild overhead

1Random selection as an example. See results for informed selection in the paper.

Ti
m

e
(m

in)
0

2

4

100 400 700

3.82
2.59

1.86
3.46

2.56
1.76

Ti
m

e
(m

in)

0

3.5

7

100 400 700

6.23
4.68

3.07
5.65

4.35
3.06

Ti
m

e
(m

in)

0

25

50

Population size
100 400 700

39.59
27.53

12.86

40.06
26.94

13

FEMNIST
@CNN

OpenImage
@MobileNet

Reddit
@Albert

Lotto adds no more than 10% in time
w/o Lotto
w/ Lotto

210

Lotto induces no or mild overhead

1Random selection as an example. See results for informed selection in the paper.

Ti
m

e
(m

in)
0

2

4

100 400 700

3.82
2.59

1.86
3.46

2.56
1.76

Ti
m

e
(m

in)

0

3.5

7

100 400 700

6.23
4.68

3.07
5.65

4.35
3.06

Ti
m

e
(m

in)

0

25

50

Population size
100 400 700

39.59
27.53

12.86

40.06
26.94

13

FEMNIST
@CNN

OpenImage
@MobileNet

Reddit
@Albert

Tr
affi

c
(G

B)

0

0.25

0.5

100 400 700

0.45
0.26

0.06

0.45
0.26

0.06

Tr
affi

c
(G

B)

0

0.25

0.5

100 400 700

0.45
0.25

0.06

0.45
0.25

0.06

Tr
affi

c
(G

B)

0

3.5

7

Population size
100 400 700

6.56
3.75

0.94

6.56
3.75

0.94

Lotto costs negligible in network
w/o Lotto
w/ Lotto

Lotto adds no more than 10% in time

211

Lotto functions as insecure selectors

212

Lotto functions as insecure selectors
Oort1 → State-of-the-art informed selector: optimized for time-to-accuracy of training

1Lai et al. “Oort: Efficient Federated Learning via Guided Participant Selection”, In OSDI ’21

213

Lotto functions as insecure selectors

FEMNIST@CNN OpenImage@MobileNet Reddit@Albert

1Lai et al. “Oort: Efficient Federated Learning via Guided Participant Selection”, In OSDI ’21

Oort1 → State-of-the-art informed selector: optimized for time-to-accuracy of training

214

Lotto functions as insecure selectors

FEMNIST@CNN OpenImage@MobileNet

1Lai et al. “Oort: Efficient Federated Learning via Guided Participant Selection”, In OSDI ’21

Reddit@Albert

Lotto well approximate Oort with no
cost in time-to-accuracy performance

Oort1 → State-of-the-art informed selector: optimized for time-to-accuracy of training

215

Lotto: Results summary

Security EfficiencyFunctionality

Theoretical guarantee (tight
probability bound) of
preventing manipulation

Mild runtime overhead (≤10%)
with no network cost (<1%)

Support both random
(exact) and informed (well

approximated) selection

github.com/SamuelGong/Lotto

216

Summary: My efforts

Privacy-Enhancing
Technique

Privacy Guarantee

Federated Learning

Data kept on premises

Secure Aggregation Differential Privacy

Global update leaks
little about any client

Local updates unseen

Pisces
Efficiency

Time-to-accuracy…

Privacy
Worst-case defense…

Dordis

Lotto

217

Future work

Dordis

218

Privacy-Enhancing
Technique Federated Learning Secure Aggregation Differential Privacy

PiscesAsync

Sync Lotto

1. Better private learning on the edge

Incompatible

Dordis

219

Privacy-Enhancing
Technique Federated Learning Secure Aggregation Differential Privacy

PiscesAsync

Sync Lotto

Incompatible

How to protect local updates? How to mitigate stragglers?

1. Better private learning on the edge

220

2. Private unlearning on the edge

Learning

221

2. Private unlearning on the edge

Learning Unlearning

222

2. Private unlearning on the edge

Learning Unlearning

Have been seen
by the attackers

Possible/
meaningful?

223

Data privacy

+

+

+

+

3. Security: Beyond privacy

224

3. Security: Beyond privacy

+

+

+

+

Data privacy Model security

225

List of Publications
1. ☆ Lotto: Secure Participant Selection against Adversarial Servers in

Federated Learning. [Security 2024]

•Zhifeng Jiang, Peng Ye, Shiqi He, Wei Wang, Ruichuan Chen, Bo Li
2. ☆ Dordis: Efficient Federated Learning with Dropout-Resilient

Differential Privacy. [EuroSys 2024]

•Zhifeng Jiang, Wei Wang, Ruichuan Chen
3. ☆ Pisces: Efficient Federated Learning via Guided Asynchronous

Training. [SoCC 2022]

•Zhifeng Jiang, Wei Wang, Baochun Li, Bo Li
4. Towards Efficient Synchronous Federated Training: A Survey on

System Optimization Strategies. [IEEE Trans. Big Data 2022]

•Zhifeng Jiang, Wei Wang, Bo Li, Qiang Yang

The publications covered by

this thesis is marked with ☆

5. Gillis: Serving Large Neural Networks in Serverless Functions with
Automatic Model Partitioning. [ICDCS 2021]

•Minchen Yu, Zhifeng Jiang, Hok Chun Ng, Wei Wang, Ruichuan Chen,
Bo Li

6. Feature Reconstruction Attacks and Countermeasures of DNN Training
in Vertical Federated Learning. [IEEE TDSC 2024, Pending Major
Revision]

•Peng Ye, Zhifeng Jiang, Wei Wang, Bo Li, Baochun Li
7. FedCA: Efficient Federated Learning with Client Autonomy. [In

Submission]

•Na Lv, Zhi Shen, Chen Chen, Zhifeng Jiang, Jiayi Zhang, Quan Chen,
Minyi Guo

8. FLASHE: Additively Symmetric Homomorphic Encryption for Cross-Silo
Federated Learning. [arXiv 2021]

•Zhifeng Jiang, Wei Wang, Yang Liu

