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Edge devices generate 
massive data

Increasing resource on 
edge devices

machine learning 
driven to the edge

1Exploding topics blog, “Amount of Data Created Daily (2024)”, 2023
2Photoroom blog, “Core ML performance benchmark iPhone 15 (2023)”, 2023
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Private learning on the edge
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1McMahan et al. “Communication-Efficient Learning of Deep Networks from Decentralized Data”, In AISTATS ’17

Privacy-Enhancing 
Technique

Privacy Guarantee

Federated Learning1

Data kept on premises

Private learning on the edge

Real application:
Google’s Keyboard, …
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1McMahan et al. “Communication-Efficient Learning of Deep Networks from Decentralized Data”, In AISTATS ’17
2Yue et al. “Gradient Obfuscation Gives a False Sense of Security in Federated Learning”, In Security ’23

Privacy-Enhancing 
Technique

Privacy Guarantee

Federated Learning1

Data kept on premises
Ground truth Reconstructed

Problem: Data can be reconstructed 
from local model updates2

Private learning on the edge
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Privacy-Enhancing 
Technique

Privacy Guarantee

Federated Learning1

Data kept on premises

Secure Aggregation3,4

1McMahan et al. “Communication-Efficient Learning of Deep Networks from Decentralized Data”, In AISTATS ’17
2Yue et al. “Gradient Obfuscation Gives a False Sense of Security in Federated Learning”, In Security ’23
3Bonawitz et al. “Practical Secure Aggregation for Privacy-Preserving Machine Learning”, In CCS ‘17
4Bell et al. “Secure Single-Server Aggregation with (Poly) Logarithmic Overhead”, In CCS ’20

5Nasr et al. “Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference 
Attacks against Centralized and Federated Learning”, In S&P ’19
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Privacy-Enhancing 
Technique

Privacy Guarantee

Federated Learning1

Data kept on premises

Secure Aggregation3,4 Differential Privacy6

Global update leaks
little about any client

1McMahan et al. “Communication-Efficient Learning of Deep Networks from Decentralized Data”, In AISTATS ’17
2Yue et al. “Gradient Obfuscation Gives a False Sense of Security in Federated Learning”, In Security ’23
3Bonawitz et al. “Practical Secure Aggregation for Privacy-Preserving Machine Learning”, In CCS ‘17
4Bell et al. “Secure Single-Server Aggregation with (Poly) Logarithmic Overhead”, In CCS ’20

+ →
Random 

noise

5Nasr et al. “Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference 
Attacks against Centralized and Federated Learning”, In S&P ’19
6Cynthia. “Differential Privacy”, 06.

Local updates unseen

Private learning on the edge
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Secure Aggregation Differential Privacy

Global update leaks
little about any client

+ →
Random 

noise

Local updates unseen
      Practice1,2:          = 1/4 
Each client adds an even share of the 
target noise to its local model update

+

+

+

+

1Kairouz et al. “The Distributed Discrete Gaussian Mechanism for Federated Learning with Secure 
Aggregation”, In ICML ’21
2Agarwal. “The Skellam Mechanism for Differentially Private Federated Learning”, In NeurIPS ‘21

Private learning on the edge

Com
bined
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Privacy-Enhancing 
Technique

Privacy Guarantee

Federated Learning

Data kept on premises

Secure Aggregation Differential Privacy

Global update leaks
little about any client

Local updates unseen

First work: Pisces1

Stragglers 
bottleneck time

Primitives heavy in 
comp. and comm.

Client dropout yields 
insufficient noise

Only or mostly works with honest participantsCan be a 
dishonest majority

Efficiency
Time-to-accuracy…

xPrivacy
Worst-case defense…

1Jiang et al. “Pisces: Efficient Federated Learning via Guided Asynchronous Training”, In SoCC ’22
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Need for Pisces

Federated Learning

Time

A training round

Participants

Straggler

Synchronous

…

Idle waiting: 33.2% to 57.2%

Potential approach:
• Prioritize fast clients in selection

  Time-to-accuracy = mean round time    # rounds ×

Selected clients have bad data quality…
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Need for Pisces

Federated Learning

Time

A training round

Participants

Straggler

Synchronous

…

Idle waiting: 33.2% to 57.2%
  Time-to-accuracy = mean round time    # rounds ×

Potential approach:
• Prioritize fast clients in selection
• Also consider their data quality
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Need for Pisces

1Lai et al. “Oort: Efficient Federated Learning via Guided Participant Selection”, In OSDI ’21

SOTA - Oort1

• Definition of score for  client :
   


     


• Clients with higher score are selected

Ui i

Ui = ( T
ti )

1(T<ti)×α

speed

×|Bi|
1

|Bi| ∑
k∈Bi

Loss(k)2

data quality

Data quality

Speed

High

LowData quality
Speed

   

 High speed 
& Low data quality

speed ∝ 1
data quality

→

Ideal 
 High speed 

& High data quality
→

Problem: Navigation between clients’ speed and 
data quality is inherently tricky

Oort is 2.7× worse than random selection
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Pisces - Overview

EfficiencyTheory

Improvement in
time-to-accuracy

Mitigating straggler effects for maximum efficiency

Provable convergence for 
smooth non-convex problems

Principled asynchronous training: Side-step the 
tricky speed-data tradeoffs with minimum side-effects
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Pisces - Overview

Efficiency PracticalityTheory

Easily Integrated to 
production frameworks

Mitigating straggler effects for maximum efficiency

Provable convergence for 
smooth non-convex problems

Principled asynchronous training: Side-step the 
tricky speed-data tradeoffs with minimum side-effects

Improvement in
time-to-accuracy
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Asynchronous training:
• Early aggregate available local updates without 

waiting for other running participants
• Immediately invokes available clients
Intuition: side-step the speed-data tradeoff

High

LowData quality

Speed

Sync  High speed 
& Low data quality

→
Data quality

Speed

Problem: tolerance of slow clients 
yields stale local updates

Async  High data quality 
(whatever speed)

→

…Agg

Time

Agg

…Agg

Time

AggAgg …

Skip too many

Skip Contribute

“Stale”

Problem: Straggler mitigation
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E.g., staleness bound is 2
No more than 2 aggregations behind→

…Agg

Time
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Problem: Straggler mitigation
Potential approach:
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• Pause aggregation when someone 

will exceed the staleness bound 
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Agg

Time

AggPauseAgg

Stale Synchronous Parallel (SSP)1 in traditional ML

E.g., staleness bound is 2
No more than 2 aggregations behind→

…Agg

Time

AggPauseAgg

Problem: Unaware of clients’ speed and 
may be suboptimal in client efficiency

SSP: 2 as the staleness bound

When should they be done?

Problem: Straggler mitigation
Potential approach:
• Asynchronous training
• Pause aggregation when someone 

will exceed the staleness bound 
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Stale Synchronous Parallel (SSP)1 in traditional ML

E.g., staleness bound is 2
No more than 2 aggregations behind→

…Agg

Time

AggPauseAgg

Problem: Unaware of clients’ speed and 
may be suboptimal in client efficiency

SSP: 2 as the staleness bound

Problem: Straggler mitigation
Potential approach:
• Asynchronous training
• Pause aggregation when someone 

will exceed the staleness bound 
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Solution: Speed-aware aggregation  
pace control for bounded staleness

Static point of view 
• Interval evenly distributed

Adaptation for dynamics
• Anchored to the currently slowest

Time

AggAgg …

Pisces guarantees convergence

Please find more in the paper :)

Not only have higher client efficiency
But also achieve bounded staleness

Further guarantee convergence:

• At a rate slightly slower than O(1/
T) (T: # rounds)

Other designs on efficiency/robustness…
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Pisces outperforms in time-to-accuracy

1Lai et al. “Oort: Efficient Federated Learning via Guided Participant Selection”, In OSDI ’21

Oort1 → State-of-the-art synchronous method: navigating the speed-data tradeoff

Pisces accelerates Oort by up to 2× 
without significant network cost

MNIST@LeNet5 FEMNIST@LeNet5 CIFAR10@ResNet18 Reddit@Albert

2.0× 1.8× 1.6×

1.9×

0 0.05 0.1 0.15 0.2

0.2
0.16Traffic-to- 

acc (GB)
0 0.205 0.41

0.41
0.35Traffic-to- 

acc (GB)
0 27.5 55 82.5 110

97
109Traffic-to- 

acc (GB)
0 30 60 90 120

119
78Traffic-to- 

acc (GB)
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Pisces: Results summary

Efficiency PracticalityTheory

2.0× improvement in
time-to-accuracy with no 

network overhead

Easily integrated to 
production frameworks 

like Plato

Provable convergence for 
smooth non-convex problems 
based on bounded staleness

github.com/SamuelGong/Pisces

http://github.com/SamuelGong/Pisces
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Privacy-Enhancing 
Technique

Privacy Guarantee

Federated Learning

Data kept on premises

Secure Aggregation Differential Privacy

Global update leaks
little about any client

Local updates unseen

Second work: Dordis1

Primitives heavy in 
comp. and comm.

Client dropout yields 
insufficient noise

Only or mostly works with honest participantsCan be a 
dishonest majority

Efficiency
Time-to-accuracy…

xPrivacy
Worst-case defense…

1Jiang et al. “Dordis: Efficient Federated Learning with Dropout-Resilient Differential Privacy”, In EuroSys ’24

Stragglers 
bottleneck time
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Secure Aggregation
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m24
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m34

w1 + m12 + m13+ m14

w2 - m12 + m23 + m24

w3 - m13 - m23 + m34

w4 - m14 - m24  - m34

w1 + 
w2 + 
w3 + 
w4

Σ

1. Pairwise agreement 3. Masks cancelled out

4. Outstanding masks recovered
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w3 - m13 - m23 + m34

w4 - m14 - m24  - m34

w2 + 
w3 + 
w4
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N/A
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w2 - m12 + m23 + m24

w3 - m13 - m23 + m34

w4 - m14 - m24  - m34

w1 + 
w2 + 
w3 + 
w4
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1. Pairwise agreement 3. Masks cancelled out
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Secure Aggregation

Local 
updates 
NOT 
visible

Global 
update 
visible

w1 w2

w3 w4

m12 

m13 
m14

m24

m23

m34

w1 + m12 + m13+ m14

w2 - m12 + m23 + m24

w3 - m13 - m23 + m34

w4 - m14 - m24  - m34

w1 + 
w2 + 
w3 + 
w4

Σ

w2 - m12 + m23 + m24

w3 - m13 - m23 + m34

w4 - m14 - m24  - m34

w2 + 
w3 + 
w4

Σ

w1 w2

w3 w4

m12 

Primitive 1: Pairwise masking (all-to-all)

Primitive 2: Secret sharing (all-to-all)

Need for Dordis - 1
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• E.g., SecAgg+1, improve the complexity by 
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 NOT so helpful in FL where N = 101-102

1Bell et al. “Secure Single-Server Aggregation with (Poly) Logarithmic Overhead”, In CCS ’20

Need for Dordis - 1

Ro
un

d 
Ti

m
e 

(h
)

0
0.25
0.5

0.75
1

# Participants in a round
32 48 64

0.71
0.530.37

0.95
0.73

0.47

SecAgg
SecAgg+



91

Differential Privacy

Need for Dordis - 2



92

Differential Privacy

Need for Dordis - 2

Each client adds an even share of the 
target noise to its local model update

+

+

+

+



93

Differential Privacy

Need for Dordis - 2

Each client adds an even share of the 
target noise to its local model update

+

+

+

+

Problem: Insufficient noise at the 
global update upon client dropout

Noise

Dropout more severe Data footprint clearer



94

Differential Privacy

Need for Dordis - 2

Each client adds an even share of the 
target noise to its local model update

+

+

+

+

Problem: Insufficient noise at the 
global update upon client dropout

Noise

Data footprint clearerDropout more severe



95

Differential Privacy

Need for Dordis - 2

Each client adds an even share of the 
target noise to its local model update

+

+

+

+

Problem: Insufficient noise at the 
global update upon client dropout

Noise

Data footprint clearerDropout more severe



96

Differential Privacy

Need for Dordis - 2

Each client adds an even share of the 
target noise to its local model update

+

+

+

+

Problem: Insufficient noise at the 
global update upon client dropout

Noise

Data footprint clearerDropout more severe



97

Differential Privacy

Need for Dordis - 2

Each client adds an even share of the 
target noise to its local model update

+

+

+

+

Problem: Insufficient noise at the 
global update upon client dropout

Even worse when 
accumulated 
across rounds

Begin
1 2

End more 
rounds

Noise

Data footprint clearerDropout more severe
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general workloads
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Dordis - Overview

Efficiency

Goal 2: Dropout-resilient DP

Substantial speedup for 
general workloads

System-level optimization: 
FL-specific pipeline parallelism

Goal 1: Efficient secure aggregation
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Dordis - Overview

Efficiency

Precise noise enforcement: 
add-then-remove

Substantial speedup for 
general workloads

System-level optimization: 
FL-specific pipeline parallelism

Goal 1: Efficient secure aggregation Goal 2: Dropout-resilient DP

Resilience

Privacy preserved 
regardless of client dropout
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Dordis - Overview

Integration ResilienceEfficiency

Privacy preserved 
regardless of client dropout

Seamlessly packed in one 
comprehensive system

Substantial speedup for 
general workloads

System-level optimization: 
FL-specific pipeline parallelism

Goal 1: Efficient secure aggregation Goal 2: Dropout-resilient DP

Precise noise enforcement: 
add-then-remove
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Problem 1: Performance Bottleneck

client comp. server comp.comm.

System opt.: Utilize existing resources

Step Operation Resource
1 Clients encode updates client comp.
2 Clients generate security keys client comp.
3 Clients establish shared secrets client comp.
4 Clients mask encoded updates client comp.
5 Clients upload masked updates comm.
6 Server deals with dropout server comp.
7 Server computes the sum server comp.
8 Server updates global model server comp.
9 Server dispatches global model comm.
10 Clients decode global model client comp.
11 Clients use global model client comp.
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Step Operation Resource Stage
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Potential approach:
• Pipeline parallelismclient comp. server comp.comm.

System opt.: Utilize existing resources

Step Operation Resource Stage
1 Clients encode updates
2 Clients generate security keys client
3 Clients establish shared secrets comp.
4 Clients mask encoded updates
5 Clients upload masked updates comm. 2
6 Server deals with dropout
7 Server computes the sum server comp. 3
8 Server updates global model
9 Server dispatches global model comm. 4
10 Clients decode global model client
11 Clients use global model comp.

1
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Potential approach:
• Pipeline parallelism

Traditional ML: Free 
data movement

Workflow

Diff. stages, 
diff resources

client comp. server comp.comm.

System opt.: Utilize existing resources

Step Operation Resource Stage
1 Clients encode updates
2 Clients generate security keys client
3 Clients establish shared secrets comp.
4 Clients mask encoded updates
5 Clients upload masked updates comm. 2
6 Server deals with dropout
7 Server computes the sum server comp. 3
8 Server updates global model
9 Server dispatches global model comm. 4
10 Clients decode global model client
11 Clients use global model comp.

1
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Problem 1: Performance Bottleneck

Potential approach:
• Pipeline parallelism

Traditional ML: Free 
data movement

FL: Data movement 
restricted due to privacy

Challenge: New constraints in 
optimizing pipeline parallelism

WorkflowWorkflow

Diff. stages, same resource
client comp. server comp.comm.

System opt.: Utilize existing resources

Step Operation Resource Stage
1 Clients encode updates
2 Clients generate security keys client
3 Clients establish shared secrets comp.
4 Clients mask encoded updates
5 Clients upload masked updates comm. 2
6 Server deals with dropout
7 Server computes the sum server comp. 3
8 Server updates global model
9 Server dispatches global model comm. 4
10 Clients decode global model client
11 Clients use global model comp.

1

5

Diff. stages, 
diff resources
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Problem 1: Performance Bottleneck
Solution: pipeline parallelism tailored for FL

1. Task partitioning: enable parallelism
• # Subtasks: decision variable to optimize

Time

Original
Time

# Subtasks = 2 # Subtasks = 3

Time

2. Constrained optimization

m* = arg min
m∈N+

fa,m

fs,c = bs,c + lss . t .

os,c = {0, if s = 0,
fs−1,c

bs,c = max{os,c, rs,c}

rs,c =
0, if s = 0 and c = 0,
fq,m or  ⊥ , if s ≠ 0 and c = 0,
fs,c−1, otherwise

Please find more in the paper :)

Optimal # subtasks

Different time

The FL constraintOr
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FEMNIST 

@ResNet18

CIFAR-10 
@ResNet18

CIFAR-10 
@VGG-19

Larger 
model

More 
participants
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CIFAR-10 
@ResNet18

CIFAR-10 
@VGG-19

Dropout rate 0 10% 20% 30%
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Dordis generally boosts performance
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Dordis accelerates by up to 2.4× across different 
participant scale, model size, dropout situations
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Dordis accelerates by up to 2.4× across different 
participant scale, model size, dropout situations, and aggregation methods
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Intuition - Data privacy
• Noise should never be insufficient 

Proactively add more noise than needed
→
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Each client adds Noise in global update

1 client drops0 client drops
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Intuition - Model Utility
• The less noise the better remove 

redundant noise when dropout is settled
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Problem 2: Noise Deficiency
Potential approach

• Noise decomposition during addition
Each client adds Noise in global update

O
riginal

Im
proved

Clients can send its added   
to the server for removal

1 client drops0 client drops

1/3

1/4 + 1/12

1

1 1

1+1/4

Each client adds Noise in global update
1 drops0 drops 2 drops

1/4 + 
1/12+1/6

E.g., 4 clients again, but tolerate up to 2 dropped clients

111

Solution: Generalized design 
for noise decomposition
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Closed-form method
• Noise addition: Decompose Client ’s added noise 

 into  components: , 

, and  

• Noise removal: when  clients drop out, the noise 
components  contributed by the surviving clients 

 with the index  becomes excessive 
and is removed by the server

i

ni ∼ χ( σ2
*

|S| − t ) t + 1 ni =
t

∑
k=0

ni,k

ni,0 ∼ χ( σ2
*

|S| ) ni,k ∼ χ( σ2
*

(|S| − k + 1)(|S| − k) )
(k ∈ [t])

|D |
ni,k

i ∈ S∖D k > |D |

Problem 2: Noise Deficiency
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Guarantee: Dordis enforces the  
target noise when all are semi-honest
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Please find more in the paper :)

Guarantee: Dordis enforces the target 
noise when all are semi-honest, or when 

even the server is malicious
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Closed-form method
• Noise addition: Decompose Client ’s added noise 

 into  components: , 

, and  

• Noise removal: when  clients drop out, the noise 
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 with the index  becomes excessive 
and is removed by the server
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48.46

Original Dordis

Dordis runtime overhead ≤34%

Guarantee: Dordis enforces the target 
noise when all are semi-honest, or when 

even the server is malicious

FEMNIST@
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CIFAR10@
ResNet18

CIFAR10@
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Dordis: Results summary

Integration ResilienceEfficiency

Seamlessly packed in one 
comprehensive system

Privacy preserved with target 
noise precisely enforced

regardless of client dropout

Substantial speedup up to 
2.4× for general workloads

github.com/SamuelGong/Dordis

http://github.com/SamuelGong/Dordis
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Privacy-Enhancing 
Technique

Privacy Guarantee

Federated Learning

Data kept on premises

Secure Aggregation Differential Privacy

Global update leaks
little about any client

Local updates unseen

Third work: Lotto1

Stragglers 
bottleneck time

Primitives heavy in 
comp. and comm.

Client dropout yields 
insufficient noise

Only or mostly works with honest participantsCan be a 
dishonest majority

Efficiency
Time-to-accuracy…

xPrivacy
Worst-case defense…

1Jiang et al. “Lotto: Secure Participant Selection against Adversarial Servers in Federated Learning”, In Security ’24
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Need for Lotto

Secure Aggregation Differential Privacy

Dishonesty proportion
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Secure Aggregation Differential Privacy Federated Learning
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Secure Aggregation Differential Privacy Federated Learning
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Need for Lotto

Secure Aggregation Differential Privacy Federated Learning

• Random: uniform chance 

• Informed: “best-performing” clients are preferred 
(e.g., high speed and/or rich data)

Assumption: honest participants
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Need for Lotto

Secure Aggregation Differential Privacy Federated Learning

Problem: participant selection can be 
manipulated by the malicious server

😇 😈 😇 😇😇 😈 😈 😇 😇 😇

😇 😈😈 😈

Assumption: honest participants

Population (104 -108)
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hie
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Ideal (global update w/ 
full noise)

DP Failure (global update w/ 
insufficient noise)

SecAgg Failure (local 
update w/ nearly no noise) Selected participants (101 -102)
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Threat model: malicious server colluding with 
some clients, and a public key infrastructure (PKI)

No peer-to-peer network: all traffic relayed by the server
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Lotto - Overview

Functionality

Support both random and 
informed selection

No peer-to-peer network: all traffic relayed by the server

Threat model: malicious server colluding with 
some clients, and a public key infrastructure (PKI)
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Lotto - Overview

SecurityFunctionality

Theoretical guarantee of 
preventing manipulation

No peer-to-peer network: all traffic relayed by the server

Support both random and 
informed selection

Threat model: malicious server colluding with 
some clients, and a public key infrastructure (PKI)
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Lotto - Overview

Security EfficiencyFunctionality

Theoretical guarantee of 
preventing manipulation

Mild runtime overhead 
with no network cost

No peer-to-peer network: all traffic relayed by the server

Support both random and 
informed selection

Threat model: malicious server colluding with 
some clients, and a public key infrastructure (PKI)
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Problem: Random selection
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… …

Selection criteria: <3

Randomness

RFpk1(2) = 9

RFpk2(2) = 1

RFpk3(2) = 7

Current 
round: 2

Public keys
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#1

#2

#3

… …

Select

Yes

No

No

…

Select

Yes

No

Selection criteria: <3

…

Potential approach:
• Outcome verification

For dishonest majority

I select #2

#2 RFpk2(2) < 3?

RFpk2(2) < 3?RFpk2(2) < 3?

Does
NOT matter.

Randomness Randomness

Problem: Random selection
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#1

#2

#3

… …

Select

Yes

No

No

…

Randomness Select

Yes

No

No

Selection criteria: <3

…

Potential approach:
• Outcome verification
• Only within participants (101 - 102)

For dishonest majority

I select #2, #4, #5, #6

#2 #4

#5 #6

Does
NOT matter.

Randomness

Problem: Random selection
Current 
round: 2

Necessary

RFpk1(2) = 9

RFpk2(2) = 1

RFpk3(2) = 7
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Problem: Random selection

What is achieved:
Each participant
    sees a list of peers

I select #2, #4, #5, #6

#2 #4

#5 #6

Necessary

Potential approach:
• Outcome verification
• Only within participants (101 - 102)
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Problem: Random selection

What is achieved:
Each participant
    sees a list of peers who
        presents only by chance.

I select #2, #4, #5, #6

#2 #4

#5 #6

Necessary

Potential approach:
• Outcome verification
• Only within participants (101 - 102)
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Problem: Random selection

What is achieved:
Each participant
    sees a list of peers who
        presents only by chance.

I select #2, #4, #5, #6

#2 #4

#5 #6

Necessary

Selection criteria: <3
E.g.,

Output range: [0, 10)
= 3/10

Potential approach:
• Outcome verification
• Only within participants (101 - 102)
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Problem: Random selection

What is achieved:
Each participant
    sees a list of peers who
        presents only by chance.

Selection criteria: <3
E.g.,

Output range: [0, 10)
= 3/10
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Problem: Random selection

What is achieved:
Each participant
    sees a list of peers who
        presents only by chance.

What happens to the absent?
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Problem: Random selection

What is achieved:
Each participant
    sees a list of peers who
        presents only by chance.

Problem: The server may arbitrarily
ignore honest clients

😇 😈😇 😇😇 😈 😈 😇 😇 😇
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What happens to the absent?



167

Problem: Random selection

What is achieved:
Each participant
    sees a list of peers who
        presents only by chance.

Problem: The server may arbitrarily
ignore honest clients

😇 😈😇 😇😇 😈 😈 😇 😇 😇

😇 😈😇😇😇 😈 😈 😇 😇 😇

😇 😈😇 😇😇 😈😈 😇 😇 😇

😈😇 😈 😈

Ignore before selection Ignore after selection

😇 😈😇 😇😇 😈 😈 😇 😇 😇

😇 😈😇😇😇 😈 😈 😇 😇 😇

😇 😈😇 😇😇 😈😈 😇 😇 😇

😈😇 😈 😈😇 😇 😇 😇 😇Selected
What happens to the absent?



168

Problem: Random selection

What is achieved:
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    sees a list of peers who
        presents only by chance.

Problem: The server may arbitrarily
ignore honest clients
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😇 😈😇😇😇 😈 😈 😇 😇 😇

😇 😈😇 😇😇 😈😈 😇 😇 😇

😈😇 😈 😈😇 😇 😇 😇 😇Selected

Unbounded advantage in growing dishonesty

What happens to the absent?
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Problem: Random selection

What is achieved:
Each participant
    sees a list of peers who
        presents only by chance.

What happens to the absent?

Solution: Enforce a large enough list
and a small enough chance. 
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Problem: Random selection

What is achieved:
Each participant
    sees a list of peers who
        presents only by chance.

What happens to the absent?

Example
• len(list): ≥ 200 

• Chance: ≤ 0.1%

Solution: Enforce a large enough list
and a small enough chance. 
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Problem: Random selection

What is achieved:
Each participant
    sees a list of peers who
        presents only by chance.

0.99

Example
• len(list): ≥ 200 

• Chance: ≤ 0.1%

😈 😈😈 …

≤ 50%

Selected
What happens to the absent?

Solution: Enforce a large enough list
and a small enough chance. 
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Problem: Random selection

What is achieved:
Each participant
    sees a list of peers who
        presents only by chance.

The absent will not get 
arbitrarily ignored

Example
• len(list): ≥ 200 

• Chance: ≤ 0.1%

😈 😈😈 …Selected …😇 😇 😇

Solution: Enforce a large enough list
and a small enough chance. 

0.99

≤ 50% ≥ 50%
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Problem: Random selection

What is achieved:
Each participant
    sees a list of peers who
        presents only by chance.

The absent will not get 
arbitrarily ignored

Example
• len(list): ≥ 200 

• Chance: ≤ 0.1%

😈 😈😈 …Selected …😇 😇 😇

Solution: Enforce a large enough list
and a small enough chance. 

0.99

≤ 50% ≥ 50%



174

Problem: Random selection

What is achieved:
Each participant
    sees a list of peers who
        presents only by chance.

The absent will not get 
arbitrarily ignored

Problem: Random selection

Predictable 
to server?

Examples: #2 will be selected as RFpk2(2) = 1 < 3.

Public keys

Round index

Public

Public
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Problem: Random selection

What is achieved:
Each participant
    sees a list of peers who
        presents only by chance.

The absent will not get 
arbitrarily ignored

Problem: Random selection

#2

Focused hacking

Examples: #2 will be selected as RFpk2(2) = 1 < 3.
It’s honest, so the server may grow its advantage by

Predictable 
to server?

Problem: Attack surfaces enlarged!
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Problem: Random selection

What is achieved:
Each participant
    sees a list of peers who
        presents only by chance.

The absent will not get 
arbitrarily ignored

Problem: Random selection

#2 vs

Random compromise

?

Focused hacking

Examples: #2 will be selected as RFpk2(2) = 1 < 3.
It’s honest, so the server may grow its advantage by

Predictable 
to server?

Problem: Attack surfaces enlarged!
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Problem: Random selection

What is achieved:
Each participant
    sees a list of peers who
        presents only by chance.

The absent will not get 
arbitrarily ignored

Problem: Random selection

Solution: Self-sampling with 
verifiable random functions (VRFs)1,2.

1Micali et al. “Verifiable random functions”, In FOCS ’99
2Dodis et al. “A verifiable random function with short proofs and keys”, In PKC ’05

Evaluation:   VRF.evalsk2(2) = ( 1, π2 ) ( output, proof )

#2

Secret key

Predictable 
to server?
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Problem: Random selection

What is achieved:
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    sees a list of peers who
        presents only by chance.

The absent will not get 
arbitrarily ignored

Problem: Random selection

1Micali et al. “Verifiable random functions”, In FOCS ’99
2Dodis et al. “A verifiable random function with short proofs and keys”, In PKC ’05

Evaluation:   VRF.evalsk2(2) = ( 1, π2 ) ( output, proof )

#2

Solution: Self-sampling with 
verifiable random functions (VRFs)1,2.

Predictable 
to server?
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Problem: Random selection

What is achieved:
Each participant
    sees a list of peers who
        presents only by chance.

The absent will not get 
arbitrarily ignored

Problem: Random selection

1Micali et al. “Verifiable random functions”, In FOCS ’99
2Dodis et al. “A verifiable random function with short proofs and keys”, In PKC ’05

Evaluation:   VRF.evalsk2(2) = ( 1, π2 ) ( output, proof )
Verification:  VRF.verpk2( 2, 1, π2 ) = True

#2

Public key

Solution: Self-sampling with 
verifiable random functions (VRFs)1,2.

Predictable 
to server?
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Problem: Random selection

What is achieved:
Each participant
    sees a list of peers who
        presents only by chance.

The absent will not get 
arbitrarily ignored

Problem: Random selection

1Micali et al. “Verifiable random functions”, In FOCS ’99
2Dodis et al. “A verifiable random function with short proofs and keys”, In PKC ’05

#2
I self-sample 
with (1, π2)

Unpredictable 
to server

Solution: Self-sampling with 
verifiable random functions (VRFs)1,2.

Evaluation:   VRF.evalsk2(2) = ( 1, π2 ) ( output, proof )
Verification:  VRF.verpk2( 2, 1, π2 ) = True
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Problem: Random selection

What is achieved:
Each participant
    sees a list of peers who
        presents only by chance.

The absent will not get 
arbitrarily ignored

Problem: Random selection

1Micali et al. “Verifiable random functions”, In FOCS ’99
2Dodis et al. “A verifiable random function with short proofs and keys”, In PKC ’05

#2
I self-sample 
with (1, π2) #4

#5 #6

ver = True?

ver = True?ver = True?

Unpredictable 
to server

Solution: Self-sampling with 
verifiable random functions (VRFs)1,2.

Evaluation:   VRF.evalsk2(2) = ( 1, π2 ) ( output, proof )
Verification:  VRF.verpk2( 2, 1, π2 ) = True
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Problem: Random selection

What is achieved:
Each participant
    sees a list of peers who
        presents only by chance.

The absent will not get 
arbitrarily ignored

Unpredictable 
to server

Actual participants 
throughout the training?
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Problem: Random selection

What is achieved:
Each participant
    sees a list of peers who
        presents only by chance.

The absent will not get 
arbitrarily ignored

Unpredictable 
to server

Problem: The server may not follow.Actual participants 
throughout the training?

Involve non-selected dishonest ones

😈😇 😈 😈😇 😇 😇 😇 😇😈😈 …
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Problem: Random selection

What is achieved:
Each participant
    sees a list of peers who
        presents only by chance.

The absent will not get 
arbitrarily ignored

Unpredictable 
to server

Problem: The server may not follow.Actual participants 
throughout the training?

Involve non-selected dishonest ones

😈😇 😈 😈😇 😇 😇 😇 😇😈😈 …

😈😇 😈 😈😇 😇 😇 😇 😇

Disregard selected honest ones
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Problem: Random selection

What is achieved:
Each participant
    sees a list of peers who
        presents only by chance.

The absent will not get 
arbitrarily ignored

Unpredictable 
to server

Actual participants 
throughout the training?

1Thus also of distributed DP (other privacy-enhancing techniques may not have this feature and this is left for 
future work).

Solution: Utilize existing secure 
semantics of secure aggregation1
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Actual participants 
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Problem: Random selection

What is achieved:
Each participant
    sees a list of peers who
        presents only by chance.

The absent will not get 
arbitrarily ignored

Unpredictable 
to server

Actual participants 
throughout the training?

1Thus also of distributed DP (other privacy-enhancing techniques may not have this feature and this is left for 
future work).

😈😇 😈 😈😇 😇 😇 😇 😇

…

😈😈 …

XX

No privacy risk

Solution: Utilize existing secure 
semantics of secure aggregation1

• Commitment: necessary info shared only once



188

Problem: Random selection

What is achieved:
Each participant
    sees a list of peers who
        presents only by chance.

The absent will not get 
arbitrarily ignored

Unpredictable 
to server

Actual participants 
throughout the training?

1Thus also of distributed DP (other privacy-enhancing techniques may not have this feature and this is left for 
future work).

😈😇 😈 😈😇 😇 😇 😇 😇

…

😈😈 …

XX

No privacy risk

Solution: Utilize existing secure 
semantics of secure aggregation1

• Commitment: necessary info shared only once

• Consistency check: to know remaining participants

😈😇 😈 😈😇 😇 😇 😇 😇
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Problem: Random selection

What is achieved:
Each participant
    sees a list of peers who
        presents only by chance.

The absent will not get 
arbitrarily ignored

Unpredictable 
to server

1Thus also of distributed DP (other privacy-enhancing techniques may not have this feature and this is left for 
future work).

😈😇 😈 😈😇 😇 😇 😇 😇

…

😈😈 …

XX

No privacy risk

Solution: Utilize existing secure 
semantics of secure aggregation1

• Commitment: necessary info shared only once

• Consistency check: to know remaining participants

😈😇 😈 😈😇 😇 😇 😇 😇Abort

Actual participants 
throughout the training
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Problem: Random selection

What is achieved:
Each participant
    sees a list of peers who
        presents only by chance.

The absent will not get 
arbitrarily ignored

Unpredictable 
to server

Actual participants 
throughout the training

1Thus also of distributed DP (other privacy-enhancing techniques may not have this feature and this is left for 
future work).

Minor issues:
• Fixed sample size: over-selection
• Consistent round index: uniqueness check
…

Please find more in the paper :)
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#1

#2

#3

… …

(Est.) latency

Example

1.2s

2.7s

1.6s
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(Est.) latency

Example

1.2s

2.7s
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Major Challenge: Client metrics are 
hard to verify by honest clients
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Problem: Informed selection

#1

#2

#3

… …

Select

No

Yes

Yes

…

Select

Yes

No

Selection criteria: the fastest

…

For dishonest majority

Does
NOT matter.

(Est.) latency (Est.) latency

No

Example

1.2s

2.7s

1.6s

Metrics are fake

😈😇 😇 😈

Major Challenge: Client metrics are 
hard to verify by honest clients
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Problem: Informed selection

#1
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… …
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Yes
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…

For dishonest majority

Does
NOT matter.

(Est.) latency (Est.) latency

No

Example

1.2s

2.7s

1.6s

Major Challenge: Client metrics are 
hard to verify by honest clients

Metrics are fake Metrics are true, but…

😈😇 😇 😈 😈😇 😇 😈

IP11 IPXIP16 IP16
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Problem: Informed selection

#1

#2

#3

… …

Select

No

Yes

Yes

…

Select

Yes

No

Selection criteria: the fastest

…

For dishonest majority

Does
NOT matter.

(Est.) latency (Est.) latency

No

Example

1.2s

2.7s

1.6s

Metrics are fake Metrics are true, but…

😈😇 😇 😈 😈😇 😇 😈

IP11 IPXIP16 IP16

Solution: Approximate inform 
selection by random selection

Please find more in the paper :)

Major Challenge: Client metrics are 
hard to verify by honest clients
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Lotto prevents arbitrary manipulation
What can be proven:

😇 😈😇 😇😇 😈 😈 😇 😇 😇

😇 😈😇😇😇 😈 😈 😇 😇 😇

😇 😈😇 😇😇 😈😈 😇 😇 😇

Participants😈😇 😈 😈😇 😇 😇 😇 😇Population
Lotto
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What can be proven:
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Participants😈😇 😈 😈😇 😇 😇 😇 😇Population

Base rate of dishonest clients Fraction of dishonest clients

Lotto

Align 

w/ high prob.
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Lotto prevents arbitrary manipulation
What can be proven:

😇 😈😇 😇😇 😈 😈 😇 😇 😇
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Participants😈😇 😈 😈😇 😇 😇 😇 😇Population

Base rate of dishonest clients Fractions of dishonest clients

Lotto

Align 

w/ high prob.

Example
• Population: 200,000 

• Dishonesty base rate: 0.005
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Lotto prevents arbitrary manipulation
What can be proven:
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Participants😈😇 😈 😈😇 😇 😇 😇 😇Population

Base rate of dishonest clients Fractions of dishonest clients

Lotto

Example
• Population: 200,000 

• Dishonesty base rate: 0.005
• Target participants: 200

Align 

w/ high prob.
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Lotto prevents arbitrary manipulation
What can be proven:
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Lotto
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Example
• Population: 200,000 

• Dishonesty base rate: 0.005
• Target participants: 200
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😇 😈😇 😇😇 😈 😈 😇 😇 😇
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Participants😈😇 😈 😈😇 😇 😇 😇 😇Population

Base rate of dishonest clients Fractions of dishonest clients

Lotto

Align 

w/ high prob.

Example
• Population: 200,000 

• Dishonesty base rate: 0.005
• Target participants: 200
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Lotto induces no or mild overhead

1Random selection as an example. See results for informed selection in the paper.
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1Random selection as an example. See results for informed selection in the paper.
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1Random selection as an example. See results for informed selection in the paper.
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Lotto induces no or mild overhead

1Random selection as an example. See results for informed selection in the paper.
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Lotto functions as insecure selectors
Oort1 → State-of-the-art informed selector: optimized for time-to-accuracy of training

1Lai et al. “Oort: Efficient Federated Learning via Guided Participant Selection”, In OSDI ’21
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Lotto functions as insecure selectors

FEMNIST@CNN OpenImage@MobileNet Reddit@Albert

1Lai et al. “Oort: Efficient Federated Learning via Guided Participant Selection”, In OSDI ’21

Oort1 → State-of-the-art informed selector: optimized for time-to-accuracy of training
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Lotto functions as insecure selectors

FEMNIST@CNN OpenImage@MobileNet

1Lai et al. “Oort: Efficient Federated Learning via Guided Participant Selection”, In OSDI ’21

Reddit@Albert

Lotto well approximate Oort with no  
cost in time-to-accuracy performance

Oort1 → State-of-the-art informed selector: optimized for time-to-accuracy of training
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Lotto: Results summary

Security EfficiencyFunctionality

Theoretical guarantee (tight 
probability bound) of 
preventing manipulation

Mild runtime overhead (≤10%) 
with no network cost (<1%)

Support both random 
(exact) and informed (well 

approximated) selection

github.com/SamuelGong/Lotto
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Summary: My efforts

Privacy-Enhancing 
Technique

Privacy Guarantee

Federated Learning

Data kept on premises

Secure Aggregation Differential Privacy

Global update leaks
little about any client

Local updates unseen

Pisces
Efficiency

Time-to-accuracy…

Privacy
Worst-case defense…

Dordis

Lotto
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Future work
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Privacy-Enhancing
Technique Federated Learning Secure Aggregation Differential Privacy

PiscesAsync

Sync Lotto

1. Better private learning on the edge

Incompatible
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Privacy-Enhancing
Technique Federated Learning Secure Aggregation Differential Privacy

PiscesAsync

Sync Lotto

Incompatible

How to protect local updates? How to mitigate stragglers?

1. Better private learning on the edge
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2. Private unlearning on the edge

Learning
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2. Private unlearning on the edge

Learning Unlearning
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2. Private unlearning on the edge

Learning Unlearning

Have been seen 
by the attackers

Possible/
meaningful?



223

Data privacy

+

+

+

+

3. Security: Beyond privacy
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3. Security: Beyond privacy

+

+

+

+

Data privacy Model security



225

List of Publications
1. ☆ Lotto: Secure Participant Selection against Adversarial Servers in 

Federated Learning. [Security 2024] 

•Zhifeng Jiang, Peng Ye, Shiqi He, Wei Wang, Ruichuan Chen, Bo Li 
2. ☆ Dordis: Efficient Federated Learning with Dropout-Resilient 

Differential Privacy. [EuroSys 2024] 

•Zhifeng Jiang, Wei Wang, Ruichuan Chen
3. ☆ Pisces: Efficient Federated Learning via Guided Asynchronous 

Training. [SoCC 2022] 

•Zhifeng Jiang, Wei Wang, Baochun Li, Bo Li
4. Towards Efficient Synchronous Federated Training: A Survey on 

System Optimization Strategies. [IEEE Trans. Big Data 2022] 

•Zhifeng Jiang, Wei Wang, Bo Li, Qiang Yang

The publications covered by 

this thesis is marked with ☆

5. Gillis: Serving Large Neural Networks in Serverless Functions with 
Automatic Model Partitioning. [ICDCS 2021]

•Minchen Yu, Zhifeng Jiang, Hok Chun Ng, Wei Wang, Ruichuan Chen, 
Bo Li 

6. Feature Reconstruction Attacks and Countermeasures of DNN Training 
in Vertical Federated Learning. [IEEE TDSC 2024, Pending Major 
Revision] 

•Peng Ye, Zhifeng Jiang, Wei Wang, Bo Li, Baochun Li
7. FedCA: Efficient Federated Learning with Client Autonomy. [In 

Submission]

•Na Lv, Zhi Shen, Chen Chen, Zhifeng Jiang, Jiayi Zhang, Quan Chen, 
Minyi Guo

8. FLASHE: Additively Symmetric Homomorphic Encryption for Cross-Silo 
Federated Learning. [arXiv 2021]

•Zhifeng Jiang, Wei Wang, Yang Liu


