Iowards Private and Efficient Cross-Device Federated Learning

香港科技大學 THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY

Advisor: Wei Wang Chairperson: **Yi-Min Lin** (SOSC) Committee:

- PhD Thesis Defense by Zhifeng Jiang
 - 27 May 2024

- Mo Li, Shuai Wang, Jun Zhang (ECE), Cong Wang (CityU)

Growth of edge computing

Edge devices generate massive **data**

Growth of edge computing

Growth of edge computing

Privacy-Enhancing
TechniqueFederated Learning!Privacy GuaranteeData kept on premises

¹McMahan et al.''Communication-Efficient Learning of Deep Networks from Decentralized Data'', In AISTATS '17

6

Privacy-Enhancing
TechniqueFederated Learning!Privacy GuaranteeData kept on premises

¹McMahan et al. "Communication-Efficient Learning of Deep Networks from Decentralized Data", In AISTATS '17

7

Privacy-Enhancing Federated Learning¹ Technique **Privacy Guarantee** Data kept on premises

¹McMahan et al. "Communication-Efficient Learning of Deep Networks from Decentralized Data", In AISTATS '17

2. Local training \rightarrow Local model update

Privacy-Enhancing Federated Learning¹ Technique **Privacy Guarantee** Data kept on premises

¹McMahan et al. "Communication-Efficient Learning of Deep Networks from Decentralized Data", In AISTATS '17

3. Model aggregation \rightarrow Global model update

Privacy-Enhancing Federated Learning¹ Technique Data kept on premises **Privacy Guarantee**

¹McMahan et al. "Communication-Efficient Learning of Deep Networks from Decentralized Data", In AISTATS '17

3. Model aggregation \rightarrow Global model update

Privacy-Enhancing
TechniqueFederated Learning!Privacy GuaranteeData kept on premises

¹McMahan et al. "Communication-Efficient Learning of Deep Networks from Decentralized Data", In AISTATS '17

Real application: Google's Keyboard

Privacy-Enhancing
TechniqueFederated Learning!Privacy GuaranteeData kept on premises

¹McMahan et al. "Communication-Efficient Learning of Deep Networks from Decentralized Data", In AISTATS '17

Real application: Google's Keyboard, ...

¹McMahan et al.''Communication-Efficient Learning of Deep Networks from Decentralized Data'', In AISTATS '17 ²Yue et al.''Gradient Obfuscation Gives a False Sense of Security in Federated Learning'', In Security '23

Ground truth

Reconstructed

Problem: Data can be reconstructed from **local model updates**²

13

Privacy-Enhancing Technique

Privacy Guarantee

Data kept on premises

Federated Learning¹

¹McMahan et al.''Communication-Efficient Learning of Deep Networks from Decentralized Data'', In AISTATS '17 ²Yue et al.''Gradient Obfuscation Gives a False Sense of Security in Federated Learning'', In Security '23 ³Bonawitz et al.''Practical Secure Aggregation for Privacy-Preserving Machine Learning'', In CCS '17 ⁴Bell et al.''Secure Single-Server Aggregation with (Poly) Logarithmic Overhead'', In CCS '20

Secure Aggregation^{3,4}

Local updates unseen

Privacy-Enhancing Technique

Privacy Guarantee

Data kept on premises

Federated Learning¹

¹McMahan et al. "Communication-Efficient Learning of Deep Networks from Decentralized Data", In AISTATS '17 ²Yue et al. "Gradient Obfuscation Gives a False Sense of Security in Federated Learning", In Security '23 ³Bonawitz et al. "Practical Secure Aggregation for Privacy-Preserving Machine Learning", In CCS '17 ⁴Bell et al. "Secure Single-Server Aggregation with (Poly) Logarithmic Overhead", In CCS '20

Secure Aggregation^{3,4}

Local updates unseen

Problem: Data still has footprints in global model update⁵

⁻S '17 ⁵Nasr et al.''Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference Attacks against Centralized and Federated Learning'', In S&P '19

Privacy-Enhancing Technique

Privacy Guarantee

Data kept on premises

Federated Learning¹

¹McMahan et al. "Communication-Efficient Learning of Deep Networks from Decentralized Data", In AISTATS '17 ²Yue et al. "Gradient Obfuscation Gives a False Sense of Security in Federated Learning", In Security '23 ³Bonawitz et al. "Practical Secure Aggregation for Privacy-Preserving Machine Learning", In CCS '17 ⁴Bell et al. "Secure Single-Server Aggregation with (Poly) Logarithmic Overhead", In CCS '20

⁻S '17 ⁵Nasr et al.''Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference Attacks against Centralized and Federated Learning'', In S&P '19 ⁶Cynthia.''Differential Privacy'', 06.

¹Kairouz et al. "The Distributed Discrete Gaussian Mechanism for Federated Learning with Secure Aggregation", In ICML '21

²Agarwal. ''The Skellam Mechanism for Differentially Private Federated Learning'', In NeurIPS '21

Privacy-Enhancing Technique	Federated Learning	Secure Aggregation	Differential Privacy
Privacy Guarantee	Data kept on premises	Local updates unseen	Global update leaks little about any client

	Stragglers bottleneck time		Primitives heavy in comp. and comm.	Client dropout yields insufficient noise
Privacy-Enhancing Technique	Federated Learning		Secure Aggregation	Differential Privacy
Privacy Guarantee	Data kept on premises	5	Local updates unseen	Global update leaks little about any client

My Research

My Research

Can be a Can be a dishonest majority

	Stragglers bottleneck time	Primitives heavy in comp. and comm.	Client dropout yields insufficient noise
Privacy-Enhancing Technique	Federated Learning	Secure Aggregation	Differential Privacy
Privacy Guarantee	Data kept on premises	Local updates unseen	Global update leaks little about any client

× ↔ Only or mostly works with honest participants

My Research

Privacy Worst-case defense	Can be a dishonest majority	Only or mostly works with honest participants	
	Stragglers bottleneck time	Primitives heavy in comp. and comm.	Client dropout yields insufficient noise
Privacy-Enhancing Technique	Federated Learning	Secure Aggregation	Differential Privacy
Privacy Guarantee	Data kept on premises	Local updates unseen	Global update leaks little about any client

Χ

Privacy

Efficiency

Time-to-accuracy...

dishonest majority Worst-case defense...

> Stragglers bottleneck time

Can be a

Privacy-Enhancing Technique

Federated Learning

Privacy Guarantee

Data kept on premises

My Research

Only or mostly works with honest participants

Primitives heavy in comp. and comm.	Client dropout yields insufficient noise	
Secure Aggregation	Differential Privacy	
Local updates unseen	Global update leaks little about any client	

First work: Pisces

Privacy Worst-case defense.	Can be a dishonest majority	Only or mostly works	with honest participants
Efficiency Time-to-accuracy	Stragglers bottleneck time	Primitives heavy in comp. and comm.	Client dropout yields insufficient noise
Privacy-Enhancing	Federated Learning	Secure Aggregation	Differential Privacy
recnnique		00 0	Differential invacy

¹Jiang et al. ''Pisces: Efficient Federated Learning via Guided Asynchronous Training'', In SoCC '22

Synchronous

Federated Learning

A training round

Straggler

Time

Synchronous

Federated Learning

Participants

Synchronous

Federated Learning

Synchronous

A training round

Idle waiting: 33.2% to 57.2%

Federated Learning

Synchronous

A training round

Idle waiting: 33.2% to 57.2%

Federated Learning

• Prioritize fast clients in selection

Synchronous

A training round

Idle waiting: 33.2% to 57.2%

Federated Learning

Potential approach:

• Prioritize fast clients in selection

Selected clients have bad data quality...

Synchronous

A training round

Idle waiting: 33.2% to 57.2%

Federated Learning

Potential approach:

- Prioritize fast clients in selection
- Also consider their data quality

Time-to-accuracy = mean round time \times # rounds

SOTA - Oort

Lai et al. "Oort: Efficient Federated Learning via Guided Participant Selection", In OSDI '21

SOTA - Oort

• Definition of score for U_i client i:

$$U_{i} = \left(\frac{T}{t_{i}}\right)^{1(T < t_{i}) \times \alpha} \times |B_{i}| \sqrt{\frac{1}{|B_{i}|} \sum_{k \in B_{i}} Loss(k)^{2}}$$
speed
data quality

SOTA - Oort

• Definition of score for U_i client *i*:

• Clients with higher score are selected

Speed

Data quality

Ideal

→ High speed& High data quality

High Low

33

SOTA - Oort

• Definition of score for U_i client *i*:

• Clients with higher score are selected

Data quality

Ideal

 \rightarrow High speed & High data quality

34

High Low

SOTA - Oort

• Definition of score for U_i client *i*:

• Clients with higher score are selected

SOTA - Oort

• Definition of score for U_i client *i*:

• Clients with higher score are selected

Need for Pisces

SOTA - Oort

• Definition of score for U_i client *i*:

• Clients with higher score are selected

Oort is **2.7× worse** than random selection

Problem: Navigation between clients' **speed** and data quality is inherently tricky

Principled asynchronous training: Side-step the tricky speed-data tradeoffs with **minimum** side-effects

Pisces - Overview

Principled asynchronous training: Side-step the tricky speed-data tradeoffs with **minimum** side-effects

Theory

Provable convergence for smooth non-convex problems

Pisces - Overview

Principled asynchronous training: Side-step the tricky speed-data tradeoffs with **minimum** side-effects

Theory

Improvement in time-to-accuracy

Provable convergence for smooth non-convex problems

Pisces - Overview

Efficiency

Principled asynchronous training: Side-step the tricky speed-data tradeoffs with **minimum** side-effects

Theory

Improvement in time-to-accuracy

Provable convergence for smooth non-convex problems

Pisces - Overview

Efficiency

Practicality

Easily Integrated to production frameworks

Asynchronous training:

Asynchronous training:

 Early aggregate available local updates without waiting for other running participants

Asynchronous training:

- Early aggregate available local updates without waiting for other running participants
- Immediately invokes available clients

Asynchronous training:

- Early aggregate available local updates without waiting for other running participants
- Immediately invokes available clients Intuition: side-step the speed-data tradeoff

Asynchronous training:

- Early aggregate available local updates without waiting for other running participants
- Immediately invokes available clients Intuition: side-step the speed-data tradeoff

Asynchronous training:

- Early aggregate available local updates without waiting for other running participants
- Immediately invokes available clients Intuition: side-step the speed-data tradeoff

Skip		Contribute		
Agg			Agg	•••
				Time

Asynchronous training:

- Early aggregate available local updates without waiting for other running participants
- Immediately invokes available clients Intuition: side-step the speed-data tradeoff

Asynchronous training:

- Early aggregate available local updates without waiting for other running participants
- Immediately invokes available clients Intuition: side-step the speed-data tradeoff

Asynchronous training:

- Early aggregate available local updates without waiting for other running participants
- Immediately invokes available clients Intuition: side-step the speed-data tradeoff

- Potential approach:
- Asynchronous training

Potential approach:

- Asynchronous training
- Pause aggregation when someone will exceed the staleness bound

Potential approach:

- Asynchronous training
- Pause aggregation when someone will exceed the staleness bound

E.g., staleness bound is 2

Potential approach:

- Asynchronous training
- Pause aggregation when someone will exceed the staleness bound

E.g., staleness bound is 2

 \rightarrow No more than 2 aggregations behind

Potential approach:

- Asynchronous training
- Pause aggregation when someone will exceed the staleness bound

E.g., staleness bound is 2

 \rightarrow No more than 2 aggregations behind

Stale Synchronous Parallel (SSP)¹ in traditional ML

Potential approach:

- Asynchronous training
- Pause aggregation when someone will exceed the staleness bound

E.g., staleness bound is 2

 \rightarrow No more than 2 aggregations behind

Stale Synchronous Parallel (SSP)¹ in traditional ML

Problem: Unaware of clients' **speed** and may be **suboptimal** in **client efficiency**

Potential approach:

- Asynchronous training
- Pause aggregation when someone will exceed the staleness bound

E.g., staleness bound is 2

 \rightarrow No more than 2 aggregations behind

Stale Synchronous Parallel (SSP)¹ in traditional ML

Problem: Unaware of clients' **speed** and may be **suboptimal** in **client efficiency**

SSP: 2 as the staleness bound

Potential approach:

- Asynchronous training
- Pause aggregation when someone will exceed the staleness bound

E.g., staleness bound is 2

 \rightarrow No more than 2 aggregations behind

Stale Synchronous Parallel (SSP)¹ in traditional ML

Problem: Unaware of clients' **speed** and may be **suboptimal** in **client efficiency**

SSP: 2 as the staleness bound

Potential approach:

- Asynchronous training
- Pause aggregation when someone will exceed the staleness bound

E.g., staleness bound is 2

 \rightarrow No more than 2 aggregations behind

Stale Synchronous Parallel (SSP)¹ in traditional ML

Problem: Unaware of clients' **speed** and may be **suboptimal** in **client efficiency**

SSP: 2 as the staleness bound

Better case: more contributions

Solution: Speed-aware aggregation pace control for bounded staleness

Solution: Speed-aware aggregation pace control for bounded staleness

Static point of view

Interval evenly distributed

E.g., staleness bound is 2 \rightarrow No more than 2 aggregation behind

Solution: Speed-aware aggregation pace control for bounded staleness

Static point of view

Interval evenly distributed

Not aggregate until

E.g., staleness bound is 2 \rightarrow No more than 2 aggregation behind

Solution: Speed-aware aggregation pace control for bounded staleness

Static point of view

Interval evenly distributed

E.g., staleness bound is 2 \rightarrow No more than 2 aggregation behind

Solution: Speed-aware aggregation pace control for bounded staleness

Static point of view

Interval evenly distributed

Adaptation for dynamics

Anchored to the currently slowest

66

Pisces guarantees convergence

Solution: Speed-aware aggregation pace control for bounded staleness

Static point of view

Interval evenly distributed

Adaptation for dynamics

Anchored to the currently slowest

Not only have higher client efficiency But also achieve **bounded staleness**

Pisces guarantees convergence

Solution: Speed-aware aggregation pace control for bounded staleness

Static point of view

Interval evenly distributed

Adaptation for dynamics

Anchored to the currently slowest

Not only have higher client efficiency But also achieve **bounded staleness**

Further guarantee **convergence**:

At a rate slightly slower than O(I/ T) (T: # rounds)

Pisces guarantees convergence

Solution: Speed-aware aggregation pace control for bounded staleness

Static point of view

Interval evenly distributed

Adaptation for dynamics

Anchored to the currently slowest

Not only have higher client efficiency But also achieve **bounded staleness**

Further guarantee **convergence**:

At a rate slightly slower than O(I/ T) (T: # rounds)

Other designs on efficiency/robustness...

Please find more in the paper :)

Pisces outperforms in time-to-accuracy

Lai et al. "Oort: Efficient Federated Learning via Guided Participant Selection", In OSDI '21

Pisces outperforms in time-to-accuracy

Oort^I → State-of-the-art **synchronous** method: navigating the **speed-data tradeoff**

Pisces outperforms in time-to-accuracy

Oort^I → State-of-the-art **synchronous** method: navigating the **speed-data tradeoff**

MNIST@LeNet5

FEMNIST@LeNet5

Lai et al. "Oort: Efficient Federated Learning via Guided Participant Selection", In OSDI '21

CIFARI0@ResNetI8

Reddit@Albert
Pisces outperforms in time-to-accuracy

Oort[|] → State-of-the-art **synchronous** method: navigating the **speed-data tradeoff**

Pisces outperforms in time-to-accuracy

Oort[|] → State-of-the-art **synchronous** method: navigating the **speed-data tradeoff**

Pisces outperforms in time-to-accuracy

Oort[|] → State-of-the-art **synchronous** method: navigating the **speed-data tradeoff**

¹Lai et al. "Oort: Efficient Federated Learning via Guided Participant Selection", In OSDI '21

Pisces: Results summary

Provable convergence for smooth non-convex problems based on **bounded staleness**

2.0× improvement in

time-to-accuracy with no

network overhead

github.com/SamuelGong/Pisces

Efficiency

Easily integrated to **production frameworks**

like Plato

Second work: Dordis

¹Jiang et al. "Dordis: Efficient Federated Learning with Dropout-Resilient Differential Privacy", In EuroSys '24

Only or mostly works with honest participants

Primitives heavy in comp. and comm.	Client dropout yields insufficient noise
Secure Aggregation	Differential Privacy
Local updates unseen	Global update leaks little about any client

Secure Aggregation

Secure Aggregation

Secure Aggregation

I. Pairwise agreement

Secure Aggregation

3. Masks cancelled out

Secure Aggregation

3. Masks cancelled out

4. Outstanding masks **recovered**

WI + W_2 **W**₃ + **W**4

W4

Secure Aggregation

I. Pairwise agreement

3. Masks cancelled out

2. Masks **backed up**

4. Outstanding masks **recovered**

WI + W_2 **w**₃ + **W**4

W4

Secure Aggregation

Primitive I: Pairwise masking (all-to-all)

Primitive 2: Secret sharing (all-to-all)

w₁ + w₂ + w₃ + W₄

w₂ + w₃ + w₄

Problem: Pairwise masking and secret sharing are necessary but **expensive**

Secure Aggregation

Problem: Pairwise masking and secret sharing are necessary but **expensive**

Problem: Pairwise masking and secret sharing are necessary but **expensive**

¹Bell et al. "Secure Single-Server Aggregation with (Poly) Logarithmic Overhead", In CCS '20

New **algorithms** exist:

• E.g., SecAgg+

Problem: Pairwise masking and secret sharing are necessary but **expensive**

¹Bell et al. "Secure Single-Server Aggregation with (Poly) Logarithmic Overhead", In CCS '20

New algorithms exist: improve asymptotically

 E.g., SecAgg+¹, improve the complexity by O(log N)/O(N) (N: # participants in a round)

Problem: Pairwise masking and secret sharing are necessary but **expensive**

¹Bell et al. "Secure Single-Server Aggregation with (Poly) Logarithmic Overhead", In CCS '20

New **algorithms** exist: improve **asymptotically**

 E.g., SecAgg+¹, improve the complexity by O(log N)/O(N) (N: # participants in a round)

NOT so helpful in **FL** where $N = 10^{1}-10^{2}$

Problem: Pairwise masking and secret sharing are necessary but **expensive**

¹Bell et al. "Secure Single-Server Aggregation with (Poly) Logarithmic Overhead", In CCS '20

New algorithms exist: improve asymptotically

 E.g., SecAgg+¹, improve the complexity by O(log N)/O(N) (N: # participants in a round)

NOT so helpful in **FL** where $N = 10^{1}-10^{2}$

Differential Privacy

Each client adds an **even share** of the target noise to its local model update

Differential Privacy

Each client adds an **even share** of the target noise to its local model update

Differential Privacy

Problem: Insufficient noise at the global update upon client **dropout**

Dropout more severe

Data footprint clearer

Each client adds an **even share** of the target noise to its local model update

Differential Privacy

Problem: Insufficient noise at the

global update upon client **dropout**

Each client adds an **even share** of the target noise to its local model update

Differential Privacy

Problem: Insufficient noise at the

global update upon client **dropout**

Each client adds an **even share** of the target noise to its local model update

Differential Privacy

Problem: Insufficient noise at the global update upon client **dropout**

Each client adds an **even share** of the target noise to its local model update

Differential Privacy

Problem: Insufficient noise at the global update upon client **dropout**

Dordis - Overview

Dordis - Overview

System-level optimization

System-level optimization: FL-specific **pipeline parallelism**

Efficiency

Substantial speedup for general workloads

System-level optimization: FL-specific pipeline parallelism

Efficiency

Substantial speedup for general workloads

Goal 2: Dropout-resilient DP

System-level optimization: FL-specific **pipeline parallelism**

Efficiency

Substantial speedup for general workloads

Goal 2: Dropout-resilient DP

Precise **noise enforcement**: add-then-remove

Resilience

Privacy preserved regardless of client dropout

System-level optimization: FL-specific pipeline parallelism

Efficiency

Substantial speedup for general workloads

Seamlessly packed in one

comprehensive system

Goal 2: Dropout-resilient DP

Precise **noise enforcement**: add-then-remove

Integration

Resilience

Privacy preserved regardless of client dropout

System opt.: Utilize existing resources client comp.

System opt.: Utilize existing resources

client comp.

Step	Operation	Resource
I.	Clients encode updates	client comp.
2	Clients generate security keys	client comp.
3	Clients establish shared secrets	client comp.
4	Clients mask encoded updates	client comp.
5	Clients upload masked updates	comm.
6	Server deals with dropout	server comp.
7	Server computes the sum	server comp.
8	Server updates global model	server comp.
9	Server dispatches global model	comm.
10	Clients decode global model	client comp.
11	Clients use global model	client comp.

System opt.: Utilize existing resources

client comp.

Step	Operation	Resource	Stag
I	Clients encode updates		
2	Clients generate security keys	client	
3	Clients establish shared secrets	comp.	<u> </u>
4	Clients mask encoded updates		
5	Clients upload masked updates	comm.	2
6	Server deals with dropout		
7	Server computes the sum	server comp.	3
8	Server updates global model		
9	Server dispatches global model	comm.	4
10	Clients decode global model	client	_
11	Clients use global model	comp.	5

107

System opt.: Utilize existing resources

client comp.

Operation	Resource	Stage
Clients encode updates		
Clients generate security keys	client	
Clients establish shared secrets	comp.	1
Clients mask encoded updates		
Clients upload masked updates	comm.	2
Server deals with dropout		
Server computes the sum	server comp.	3
Server updates global model		
Server dispatches global model	comm.	4
Clients decode global model	client	F
Clients use global model	comp.	5
	Operation Clients encode updates Clients generate security keys Clients establish shared secrets Clients mask encoded updates Clients upload masked updates Server deals with dropout Server computes the sum Server updates global model Clients decode global model	OperationResourceClients encode updatesLClients generate security keysclientClients establish shared secretscomp.Clients mask encoded updatesComm.Clients upload masked updatescomm.Server deals with dropoutserver comp.Server updates global modelcomm.Server dispatches global modelcomm.Clients decode global modelcomm.Clients use global modelcomp.

Potential approach:

• Pipeline parallelism
System opt.: Utilize existing resources

client comp. \square comm. \bigcirc server comp.

Operation	Resource	Stage
Clients encode updates		
Clients generate security keys	client	
Clients establish shared secrets	comp.	1
Clients mask encoded updates		
Clients upload masked updates	comm.	2
Server deals with dropout		
Server computes the sum	server comp.	3
Server updates global model		
Server dispatches global model	comm.	4
Clients decode global model	client	F
Clients use global model	comp.	5
	Operation Clients encode updates Clients generate security keys Clients establish shared secrets Clients mask encoded updates Clients upload masked updates Server deals with dropout Server computes the sum Server updates global model Clients decode global model	OperationResourceClients encode updatesLClients generate security keysclientClients establish shared secretscomp.Clients mask encoded updatesComm.Clients upload masked updatescomm.Server deals with dropoutserver comp.Server updates global modelcomm.Server dispatches global modelcomm.Clients decode global modelcomm.Clients use global modelcomp.

Potential approach:

- Pipeline parallelism
 - Diff. stages,
 - diff resources

Traditional ML: Free

data movement

System opt.: Utilize existing resources

client comp.

 \leftarrow comm. \leftarrow server comp.

Operation	Resource	Stage
Clients encode updates		
Clients generate security keys	client	
Clients establish shared secrets	comp.	1
Clients mask encoded updates		
Clients upload masked updates	comm.	2
Server deals with dropout		
Server computes the sum	server comp.	3
Server updates global model		
Server dispatches global model	comm.	4
Clients decode global model	client	F
Clients use global model	comp.	5
	Operation Clients encode updates Clients generate security keys Clients establish shared secrets Clients mask encoded updates Clients upload masked updates Server deals with dropout Server computes the sum Server updates global model Clients decode global model	OperationResourceClients encode updatesLClients generate security keysclientClients establish shared secretscomp.Clients mask encoded updatesComm.Clients upload masked updatescomm.Server deals with dropoutserver comp.Server updates global modelcomm.Server dispatches global modelcomm.Clients decode global modelcomm.Clients use global modelcomp.

• Pipeline parallelism

Solution: pipeline parallelism tailored for FL

Solution: pipeline parallelism tailored for FL

I. Task partitioning: enable parallelism

Solution: pipeline parallelism tailored for FL

- I. Task partitioning: enable parallelism
- # Subtasks: decision variable to optimize

Solution: pipeline parallelism tailored for FL

- I. Task partitioning: enable parallelism
- # Subtasks: decision variable to optimize

Solution: pipeline parallelism tailored for **FL**

- I. Task partitioning: enable parallelism
- # Subtasks: decision variable to optimize

2. Constrained optimization

$$m^* = \arg\min_{m \in N_+} f_{a,m}$$

Optimal # subtasks

 $s.t. \qquad f_{s.c} = b_{s.c} + l_s$

$$b_{s,c} = \max\{o_{s,c}, r_{s,c}\}$$

The FL constraint $o_{s,c} = \begin{cases} 0, & \text{if } s = 0, \\ f_{s-1,c} \end{cases}$ $r_{s,c} = \begin{cases} 0, & \text{if } s = 0 \text{ and } c = 0, \\ f_{q,m} \text{ or } \bot, & \text{if } s \neq 0 \text{ and } c = 0, \\ f_{s,c-1}, & \text{otherwise} \end{cases}$

Please find more in the paper :)

Dropout rate

0

FEMNIST @ResNet18

CIFAR-10 @ResNet18

CIFAR-10 **@VGG-19**

Dordis generally boosts performance

10%

20%

30%

Orig → Plain sequential execution

10%	20%	30%
	80 76 9	80 78 74
	_ 40 _ 70.0	40
	- O	- 0
5	SecAgg	SecAgg
		- 16
	8.5	- 8
	0	0
5	SecAgg	SecAgg
	- 40	- 36
	20 36.26	- 18
	0	0
5	SecAgg	SecAgg
. method	Agg. method	Agg. method

Intuition - Data privacy

Intuition - Data privacy

• Noise should **never** be **insufficient**

Intuition - Data privacy

• Noise should **never** be **insufficient** \rightarrow Proactively **add more** noise than needed

Each client adds

Noise in global update

Intuition - Data privacy

• Noise should **never** be **insufficient** \rightarrow Proactively **add more** noise than needed

Each client adds

Noise in global update

Intuition - Data privacy

• Noise should **never** be **insufficient** \rightarrow Proactively **add more** noise than needed

Each client adds

Noise in global update

Intuition - Model Utility

• The less noise the **better** -> remove **redundant** noise when dropout is settled

Intuition - Data privacy

• Noise should **never** be **insufficient** \rightarrow Proactively **add more** noise than needed

Each client adds

Noise in global update

Intuition - Model Utility

• The less noise the **better** -> remove **redundant** noise when dropout is settled

Potential approach

• Noise **decomposition** during addition

Each client adds

Original

0 client drops I client drops

Noise in global update

Potential approach

• Noise **decomposition** during addition

Each client adds

Noise in global update

Potential approach

• Noise **decomposition** during addition

Each client adds Noise in global update +1/4 Original 1/3 **0** client drops I client drops Improved 1/4 + 1/12Clients can send its added to the **server** for **removal**

Potential approach

• Noise **decomposition** during addition

Each client adds Noise in global update +1/4 Original 1/3 **0** client drops I client drops Improved 1/4 + 1/12Clients can send its added to the **server** for **removal**

Solution: Generalized design

for noise decomposition

Potential approach

• Noise **decomposition** during addition

Noise in global update Each client adds +1/4 Origina 1/3 **0** client drops I client drops Improved 1/4 + 1/12Clients can send its added to the **server** for **removal**

Solution: Generalized design for noise decomposition

E.g., 4 clients again, but tolerate up to **2** dropped clients Each client adds Noise in global update

I/4 + I/12+1/6 0 drops

Closed-form method

• Noise addition: Decompose Client *i*'s added noise

$$n_{i} \sim \chi\left(\frac{\sigma_{*}^{2}}{|S|-t}\right) \text{ into } t+1 \text{ components: } n_{i} = \sum_{k=0}^{t} n_{i,k},$$
$$n_{i,0} \sim \chi\left(\frac{\sigma_{*}^{2}}{|S|}\right), \text{ and } n_{i,k} \sim \chi\left(\frac{\sigma_{*}^{2}}{(|S|-k+1)(|S|-k)}\right)$$
$$(k \in [t])$$

• Noise removal: when |D| clients drop out, the noise components $n_{i,k}$ contributed by the surviving clients $i \in S \setminus D$ with the index k > |D| becomes excessive and is removed by the server

132

Dordis enforces the target noise

Closed-form method

Noise addition: Decompose Client *i*'s added noise

$$n_{i} \sim \chi\left(\frac{\sigma_{*}^{2}}{|S| - t}\right) \text{ into } t + 1 \text{ components: } n_{i} = \sum_{k=0}^{t} n_{i,k},$$
$$n_{i,0} \sim \chi\left(\frac{\sigma_{*}^{2}}{|S|}\right), \text{ and } n_{i,k} \sim \chi\left(\frac{\sigma_{*}^{2}}{(|S| - k + 1)(|S| - k)}\right)$$
$$(k \in [t])$$

Noise removal: when |D| clients drop out, the noise components $n_{i,k}$ contributed by the surviving clients $i \in S \setminus D$ with the index k > |D| becomes excessive and is removed by the server

Guarantee: Dordis enforces the target noise when all are semi-honest

133

Dordis enforces the target noise

Closed-form method

Noise addition: Decompose Client *i*'s added noise

$$n_{i} \sim \chi\left(\frac{\sigma_{*}^{2}}{|S| - t}\right) \text{ into } t + 1 \text{ components: } n_{i} = \sum_{k=0}^{t} n_{i,k},$$
$$n_{i,0} \sim \chi\left(\frac{\sigma_{*}^{2}}{|S|}\right), \text{ and } n_{i,k} \sim \chi\left(\frac{\sigma_{*}^{2}}{(|S| - k + 1)(|S| - k)}\right)$$
$$(k \in [t])$$

Noise removal: when |D| clients drop out, the noise components $n_{i,k}$ contributed by the surviving clients $i \in S \setminus D$ with the index k > |D| becomes excessive and is removed by the server

Guarantee: Dordis enforces the target noise when all are **semi-honest**, or when even the server is **malicious**

Please find more in the paper :)

Dordis enforces the target noise

Closed-form method

• Noise addition: Decompose Client *i*'s added noise

$$n_{i} \sim \chi\left(\frac{\sigma_{*}^{2}}{|S|-t}\right) \text{ into } t+1 \text{ components: } n_{i} = \sum_{k=0}^{t} n_{i,k},$$
$$n_{i,0} \sim \chi\left(\frac{\sigma_{*}^{2}}{|S|}\right), \text{ and } n_{i,k} \sim \chi\left(\frac{\sigma_{*}^{2}}{(|S|-k+1)(|S|-k)}\right)$$
$$(k \in [t])$$

• Noise removal: when |D| clients drop out, the noise components $n_{i,k}$ contributed by the surviving clients $i \in S \setminus D$ with the index k > |D| becomes excessive and is removed by the server

Dordis runtime overhead **≤34%**

Guarantee: Dordis enforces the target noise when all are semi-honest, or when even the server is malicious

Please find more in the paper :)

Dordis: Results summary

Efficiency

Substantial speedup up to 2.4× for general workloads

Seamlessly packed in one comprehensive system

Integration

Resilience **Privacy preserved** with target noise **precisely** enforced **regardless** of client dropout

github.com/SamuelGong/Dordis

Third work: Lotto

Privacy Worst-case defense	Can be a dishonest majority	Only or mostly works with honest participants	
Efficiency Time-to-accuracy	Stragglers bottleneck time	Primitives heavy in comp. and comm.	Client dropout yields insufficient noise
Privacy-Enhancing Technique	Federated Learning	Secure Aggregation	Differential Privacy
Privacy Guarantee	Data kept on premises	Local updates unseen	Global update leaks little about any client

¹Jiang et al. "Lotto: Secure Participant Selection against Adversarial Servers in Federated Learning", In Security '24

Dishonesty proportion

Secure Aggregation

Differential Privacy

Dishonesty proportion

Secure Aggregation

Differential Privacy

Secure Aggregation

Differential Privacy

Secure Aggregation

Differential Privacy

Secure Aggregation

Differential Privacy

Need for Lotto

Federated Learning

142

Secure Aggregation

Differential Privacy

Need for Lotto

Population $(|0^4 - |0^8)$

Federated Learning

Secure Aggregation

Differential Privacy

Need for Lotto

Population $(|0^4 - |0^8)$ **Selected participants** $(|0| - |0^2)$

Federated Learning

Assumption: honest participants

Secure Aggregation

Differential Privacy

Need for Lotto

• **Random**: uniform chance

Federated Learning

Assumption: honest participants

Secure Aggregation

Differential Privacy

Need for Lotto

Population $(|0^4 - |0^8)$ **Selected participants** $(|0| - |0^2)$

- **Random**: uniform chance
- **Informed**: "best-performing" clients are preferred (e.g., high speed and/or rich data)

Federated Learning

Assumption: honest participants

Secure Aggregation

Differential Privacy

Need for Lotto

Federated Learning

Lotto - Overview

Lotto - Overview

No peer-to-peer network: all traffic relayed by the server

Threat model: malicious server colluding with some clients, and a public key infrastructure (**PKI**)

Lotto - Overview

Threat model: malicious server colluding with some clients, and a public key infrastructure (**PKI**)

Functionality

Support both **random** and informed selection

Lotto - Overview

Threat model: malicious server colluding with some clients, and a public key infrastructure (PKI)

Functionality

Support both **random** and informed selection

Theoretical guarantee of

preventing manipulation

Lotto - Overview

Security

Threat model: malicious server colluding with some clients, and a public key infrastructure (PKI)

Functionality

Support both **random** and informed selection

Theoretical guarantee of

preventing manipulation

Lotto - Overview

Security

Efficiency

Mild runtime overhead with no **network cost**

Selection criteria: <3

Curr roun	ent d: 2	5
	Randomness	Select
#	$RF_{pkl}(2) = 9$	No
#2	$RF_{pk2}(2) = 1$	Yes
#3	$RF_{pk3}(2) = 7$	No

Selection criteria: <3

157

Selection criteria: <3 For dishonest majority

Problem: Random selection

Potential approach:

• Outcome verification

For dishonest majority Selection criteria: <3

1	3?	
1	3?	

Selection criteria: <3 For dishonest majority

Problem: Random selection

Potential approach:

- Outcome verification
- Only within participants (10¹ 10²)

What is achieved:

Each participant sees a list of peers

Potential approach:

- Outcome verification
- Only within participants (10¹ 10²)

What is achieved: Each participant sees a list of peers who presents only by chance.

Potential approach:

- Outcome verification
- Only within participants (10¹ 10²)

What is achieved: Each participant sees a list of peers who presents only by chance.

Selection criteria: <3

= 3/10

Output range: [0, 10)

Potential approach:

- Outcome verification
- Only within participants (10¹ 10²)

What is achieved: Each participant sees a list of peers who presents only by chance.

Selection criteria: <3

= 3/10

Output range: [0, 10)

What is achieved:

Each participant sees a list of peers who presents only by chance.

What is achieved:

Each participant sees a list of peers who presents only by chance.

Problem: The server may arbitrarily **ignore honest** clients

What is achieved:

Each participant sees a list of peers who presents only by chance.

Problem: The server may arbitrarily **ignore honest** clients

What is achieved:

Each participant sees a list of peers who presents only by chance.

Problem: The server may arbitrarily **ignore honest** clients

Unbounded advantage in growing dishonesty

What is achieved:

Each participant sees a list of peers who presents only by chance.

Solution: Enforce a large enough list and a small enough chance.

What is achieved:

Each participant sees a list of peers who presents only by chance.

Solution: Enforce a large enough list and a small enough chance.

Example

- **len(list)**: ≥ 200
- Chance: $\leq 0.1\%$

What is achieved:

Each participant sees a list of peers who presents only by chance.

Solution: Enforce a **large enough list** and a **small enough chance**.

What is achieved: Each participant sees a list of peers who

presents only by chance.

Solution: Enforce a **large enough list** and a **small enough chance**.

What is achieved: Each participant sees a list of peers who

presents only by chance.

Solution: Enforce a large enough list and a small enough chance.

► 0.99 .0 Pr. Fail in Half Dishonesty Example • **len(list)**: ≥ 200 0.5 • **Chance**: $\leq 0.1\%$ 0.0 80000 100000 120000 # Dishonest clients 55 Selected ≤ **50%** ≥ **50%**

What is achieved: Predictable to server? Each participant sees a list of peers who presents only by chance.

Public Round index **Examples**: #2 will be selected as $\mathbf{RF}_{pk2}(2) = 1 < 3$. Public Public keys

What is achieved: Predictable to server? Each participant sees a list of peers who presents only by chance.

Problem: Attack surfaces **enlarged**!

Examples: #2 will be selected as $\mathbf{RF}_{pk2}(2) = 1 < 3$. It's honest, so the server may grow its advantage by

Focused ha	acking
------------	--------

What is achieved: Predictable to server? Each participant sees a list of peers who presents only by chance.

Problem: Attack surfaces **enlarged**!

Examples: #2 will be selected as $\mathbf{RF}_{pk2}(2) = 1 < 3$.

What is achieved:PredictableEach participantto server?sees a list of peers who)presents only by chance.

The absent will not get arbitrarily ignored

¹Micali et al. ''Verifiable random functions'', In FOCS '99 ²Dodis et al. ''A verifiable random function with short proofs and keys'', In PKC '05 Solution: Self-sampling with

verifiable random functions (VRFs)^{1,2}.

Evaluation: **VRF.eval**_{sk2}(2) = (I,) (output, Secret key —

Predictable What is achieved: to server? Each participant sees a list of peers who presents only by chance.

The absent will not get arbitrarily ignored

¹Micali et al. "Verifiable random functions", In FOCS '99 ²Dodis et al. "A verifiable random function with short proofs and keys", In PKC '05 Solution: Self-sampling with

verifiable random functions (**VRFs**)^{1,2}.

Evaluation: **VRF.eval**_{sk2}(2) = $(I, \mathbf{\pi}_2)$ (output, **proof**)

Predictable What is achieved: to server? Each participant sees a list of peers who presents only by chance.

The absent will not get arbitrarily ignored

¹Micali et al. "Verifiable random functions", In FOCS '99 ²Dodis et al. "A verifiable random function with short proofs and keys", In PKC '05 Solution: Self-sampling with

verifiable random functions (**VRFs**)^{1,2}.

Evaluation: **VRF.eval**_{sk2}(2) = $(I, \mathbf{\pi}_2)$ (output, **proof**) Verification: **VRF.ver**_{pk2}(2, I, $\mathbf{\pi}_2$) = True Public key 🦯

Unpredictable What is achieved: to server Each participant sees a list of peers who presents only by chance.

The absent will not get arbitrarily ignored

¹Micali et al. "Verifiable random functions", In FOCS '99 ²Dodis et al. "A verifiable random function with short proofs and keys", In PKC '05 Solution: Self-sampling with

verifiable random functions (**VRFs**)^{1,2}.

Evaluation: **VRF.eval**_{sk2}(2) = $(I, \mathbf{\pi}_2)$ (output, **proof**) Verification: **VRF.ver**_{pk2}(2, I, $\mathbf{\pi}_2$) = True

What is achieved:UnpredictableEach participantto serversees a list of peers whoImage: Compresents only by chance.

The absent will not get arbitrarily ignored

¹Micali et al. "Verifiable random functions", In FOCS '99 ²Dodis et al. "A verifiable random function with short proofs and keys", In PKC '05

Evaluation: **VRF.eval**_{sk2}(2) = ($I, \mathbf{\pi}_2$) (output, **pr** Verification: **VRF.ver**_{pk2}(2, $I, \mathbf{\pi}_2$) = True

Actual participants throughout the training?

What is achieved: Unpredictable Each participant to server sees a list of peers who presents only by chance.

> The absent will not get arbitrarily ignored

Actual participants throughout the training?

What is achieved: Unpredictable Each participant to server sees a list of peers who presents only by chance.

> The absent will not get arbitrarily ignored

Problem: The server may **not follow**.

Involve non-selected dishonest ones

Actual participants throughout the training?

What is achieved: Unpredictable Each participant to server sees a list of peers who presents only by chance.

> The absent will not get arbitrarily ignored

Problem: The server may **not follow**.

Involve non-selected dishonest ones

Disregard **selected honest** ones

Actual participants throughout the training?

What is achieved: Unpredictable to server Each participant sees a list of peers who presents only by chance. The absent will not get

arbitrarily ignored

¹Thus also of distributed DP (other privacy-enhancing techniques may not have this feature and this is left for future work).

Solution: Utilize existing secure semantics of secure aggregation¹

Actual participants throughout the training?

What is achieved: Unpredictable to server Each participant sees a list of peers who presents only by chance. The absent will not get

arbitrarily ignored

Thus also of distributed DP (other privacy-enhancing techniques may not have this feature and this is left for future work).

Solution: Utilize existing secure semantics of secure aggregation¹

• **Commitment**: necessary info shared only once

Actual participants throughout the training?

What is achieved: Unpredictable to server Each participant sees a list of peers who presents only by chance. The absent will not get

arbitrarily ignored

¹Thus also of distributed DP (other privacy-enhancing techniques may not have this feature and this is left for future work).

Solution: Utilize existing secure semantics of secure aggregation¹

• **Commitment**: necessary info shared only once

Actual participants throughout the training?

What is achieved: Unpredictable Each participant to server sees a list of peers who presents only by chance. The absent will not get

arbitrarily ignored

¹Thus also of distributed DP (other privacy-enhancing techniques may not have this feature and this is left for future work).

Solution: Utilize existing **secure semantics** of secure aggregation¹

• **Commitment**: necessary info shared only once

• Consistency check: to know remaining participants

Actual participants throughout the training

What is achieved: Unpredictable Each participant to server sees a list of peers who presents only by chance. The absent will not get

arbitrarily ignored

¹Thus also of distributed DP (other privacy-enhancing techniques may not have this feature and this is left for future work).

Solution: Utilize existing **secure semantics** of secure aggregation¹

• **Commitment**: necessary info shared only once

• Consistency check: to know remaining participants

Actual participants throughout the training

What is achieved:UnpredictableEach participantto serversees a list of peers whopresents only by chance.

The absent will not get arbitrarily ignored

¹Thus also of distributed DP (other privacy-enhancing techniques may not have this feature and this is left for future work).

Minor issues:

. . .

- Fixed sample size: over-selection
- Consistent round index: uniqueness check

Please find more in the paper :)

190

Selection criteria: the fastest For dishonest majority

194

Problem: Informed selection

Major Challenge: Client metrics are hard to verify by honest clients

Problem: Informed selection

Major Challenge: Client metrics are hard to verify by honest clients

Metrics are fake

Problem: Informed selection

Major Challenge: Client metrics are hard to verify by honest clients

Metrics are fake

Metrics are true, but...

Problem: Informed selection

Major Challenge: Client metrics are hard to verify by honest clients

Metrics are fake

Metrics are true, but...

Solution: Approximate inform selection by **random** selection

Please find more in the paper :)

What can be **proven**:

Population

Population

Base rate of dishonest clients

What can be **proven**:

Base rate of dishonest clients

Example

- **Population**: 200,000
- Dishonesty base rate: 0.005

What can be **proven**:

What can be **proven**:

Base rate of dishonest clients

Example

- **Population**: 200,000
- Dishonesty base rate: 0.005
- Target participants: 200

What can be **proven**:

Base rate of dishonest clients

Example

- **Population**: 200,000
- Dishonesty base rate: 0.005
- Target participants: 200

What can be **proven**:

Base rate of dishonest clients

Example

- **Population**: 200,000
- Dishonesty base rate: 0.005
- Target participants: 200

¹Random selection as an example. See results for informed selection in the paper.

207

¹Random selection as an example. See results for informed selection in the paper.

208

Random selection as an example. See results for informed selection in the paper.

Oort^I → State-of-the-art **informed** selector: optimized for **time-to-accuracy** of training

Lai et al. "Oort: Efficient Federated Learning via Guided Participant Selection", In OSDI '21

Oort^I → State-of-the-art **informed** selector: optimized for **time-to-accuracy** of training

Oort^I → State-of-the-art **informed** selector: optimized for **time-to-accuracy** of training

¹Lai et al. "Oort: Efficient Federated Learning via Guided Participant Selection", In OSDI '21

Lotto: Results summary

Support both random (exact) and informed (well **approximated)** selection

Theoretical guarantee (tight probability bound) of preventing manipulation

github.com/SamuelGong/Lotto

Security

Efficiency

Mild **runtime overhead (≤10%)** with no **network cost (<1%)**

Future work

2. Private unlearning on the edge

Learning

2. Private unlearning on the edge

Learning

Unlearning

2. Private unlearning on the edge

Learning

Unlearning

Data privacy

3. Security: Beyond privacy

Data privacy

3. Security: Beyond privacy

Model security

List of Publications

- 1. $\cancel{}$ Lotto: Secure Participant Selection against Adversarial Servers in Federated Learning. [Security 2024]
 - <u>Zhifeng Jiang</u>, Peng Ye, Shiqi He, Wei Wang, Ruichuan Chen, Bo Li
- 2. \Rightarrow Dordis: Efficient Federated Learning with Dropout-Resilient Differential Privacy [EuroSys 2024]
 - <u>Zhifeng Jiang</u>, Wei Wang, Ruichuan Chen
- 3. \uparrow Pisces: Efficient Federated Learning via Guided Asynchronous Training. **[SoCC 2022]**
 - <u>Zhifeng Jiang</u>, Wei Wang, Baochun Li, Bo Li
- **4.** Towards Efficient Synchronous Federated Training: A Survey on System Optimization Strategies. [IEEE Trans. Big Data 2022]
 - <u>Zhifeng liang</u>, Wei Wang, Bo Li, Qiang Yang

The publications **covered by**

this thesis is marked with \checkmark

- 5. Gillis: Serving Large Neural Networks in Serverless Functions with Automatic Model Partitioning. **[ICDCS 2021]**
 - Minchen Yu, <u>Zhifeng Jiang</u>, Hok Chun Ng, Wei Wang, Ruichuan Chen, Bo Li
- 6. Feature Reconstruction Attacks and Countermeasures of DNN Training in Vertical Federated Learning. **[IEEE TDSC 2024, Pending Major Revision**]
 - Peng Ye, <u>Zhifeng Jiang</u>, Wei Wang, Bo Li, Baochun Li
- 7. FedCA: Efficient Federated Learning with Client Autonomy. [In Submission]
 - Na Lv, Zhi Shen, Chen Chen, <u>Zhifeng Jiang</u>, Jiayi Zhang, Quan Chen, Minyi Guo
- 8. FLASHE: Additively Symmetric Homomorphic Encryption for Cross-Silo Federated Learning. [arXiv 2021]
 - <u>Zhifeng Jiang</u>, Wei Wang, Yang Liu

