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Centralized learning hurts privacy

Data breaches…
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Data breaches…

Potential abuse…

Centralized learning hurts privacy
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Local learning
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Local learning suffers from low data quality
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Federated Learning 
(FL)

Utility

Privacy

Centralized learning

Local learning
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Step 1: Participant Selection

Initial model

Participants

Client 
population
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Step 2: Local Training

Initial model

Local model update
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Step 3: Model Aggregation

Aggregated 
update
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Cross-Device Applications

Google’s Keyboard
Mobile
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Google’s Keyboard
Mobile

Apple’s speaker recognition

IoT

Volvo’s trajectory prediction Cisco’s 3D printing Leveno’s clogging detection

Brave’s news recommendation

Huawei’s ads recommendation

Firefox’s URL bar suggestion

Cross-Device Applications
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Challenge: identify and address the fundamental 
privacy and efficiency issues in cross-device FL

Data leakage…
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Challenge: identify and address the fundamental 
privacy and efficiency issues in cross-device FL

Data leakage…

e.g., data reconstruction1 (Security ’23)

[1] Gradient Obfuscation Gives a False Sense of Security in Federated Learning
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Challenge: identify and address the fundamental 
privacy and efficiency issues in cross-device FL

Time-to-accuracy…

Target 
acc

TimeData leakage…
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My Work: build private and efficient cross-device FL

Efficient asynchronous training (SoCC ’22)

Time-to-accuracy…

Target 
acc

Time

Weak privacy 
attackers

Data leakage…
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My Work: build private and efficient cross-device FL

Efficient asynchronous training (SoCC ’22)
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Stragglers are an efficiency bottleneck in sync FL

Time

A training round

Participants

Straggler
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Target 
acc

Time-to-acc

…

Idle waiting: 33.2% to 57.2%

Stragglers are an efficiency bottleneck in sync FL
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…

Participant selection as a fix?

avg. round time ↓

Prioritize clients with high speed
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Participant selection as a fix?

time-to-accuracy = [avg. round time]  [# rounds]×

# rounds

avg. round time

Prioritize clients with high speed and data quality

…
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Participant selection as a fix?

Prioritize clients with high speed and data quality

State-of-the-art: Oort1 (OSDI ’21)

- Clients with higher score are selected more


- Definition of score  for client :


     

Ui i

Ui = ( T
ti )

1(T<ti)×α

speed

×|Bi|
1

|Bi| ∑
k∈Bi

Loss(k)2

data quality Data quality

Speed

High

Low

Priority

[1] Oort: Efficient federated learning via guided participant selection
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Participant selection as a fix?

Prioritize clients with high speed and data quality

State-of-the-art: Oort (OSDI ’21)


Inefficient in achieving the best tradeoff in practice where   speed ∝
1

data quality

Data quality

Speed
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Participant selection as a fix?

Prioritize clients with high speed and data quality

State-of-the-art: Oort (OSDI ’21)


Inefficient in achieving the best tradeoff in practice where   speed ∝
1

data quality

Data quality

Speed

an FL testbed

2.7  slower 
than random 

selection!

×
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Prioritize clients with high speed and data quality

State-of-the-art: Oort (OSDI ’21)


Inefficient in achieving the best tradeoff in practice where   


Fundamental challenge in sync FL: unpleasant coupling demands for speed and data quality

speed ∝
1

data quality

Participant selection as a fix?

Data quality

Speed

an FL testbed

2.7  slower 
than random 

selection!

×
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To sidestep this challenge

Can we decouple them?

Data quality

Speed

High

Low

Priority

① Mostly emphasize

② While 
making up for
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To sidestep this challenge

Can we decouple them?

Data quality

Speed

High

Low

Priority

① Mostly emphasize

② While 
making up for

Sure! If the training is asynchronous
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To sidestep this challenge

Participants Time

global model version: 0 1→
0

0

0

0

Asynchronous Training

- Select some clients with best data and send them the latest model

- Early aggregate local updates without waiting for some running participants
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To sidestep this challenge

Asynchronous Training

- Select some clients with best data and send them the latest model

- Early aggregate local updates without waiting for some running participants

Time

Participants

global model version: 1
0

0

0

0

1

1
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To sidestep this challenge

Asynchronous Training

- Select some clients with best data and send them the latest model

- Early aggregate local updates without waiting for some running participants

More frequent update

Participants

0

0

0

0

1

1

2

2 3

3

3

4

4

5

5 6

6

7

7

…
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To sidestep this challenge

How to really benefit efficiency with async FL?

      Shorter time-to-accuracy

More frequent update Each update makes 

good progress

Done by 
Async FL

#TODO
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To sidestep this challenge

How to really benefit efficiency with async FL?

      Shorter time-to-accuracy

More frequent update Each update makes 

good progress

The involved clients’

contribution do not cancel out

The involved clients

have good data #TODO

Done by 
Async FL



34

To sidestep this challenge

How to really benefit efficiency with async FL?

      Shorter time-to-accuracy

More frequent update Each update makes 

good progress

The involved clients’

contribution do not cancel out

The involved clients

have good data

Done by 
Async FL

0

0

0

0

1

1

2

2 3

3

3

4

4

5

5 6

6

7

7

…

#TODO



35

To sidestep this challenge

How to really benefit efficiency with async FL?

      Shorter time-to-accuracy

More frequent update Each update makes 

good progress

The involved clients’

contribution do not cancel out

The involved clients

have good data

#TODO

Done by 
Async FL

0

0

0

0

1

1

2

2 3

3

3

4

4

5

5 6

6

7

7

…

Staleness: how “old” w.r.t. the latest Their used models are not too old



36

      Shorter time-to-accuracyTheir used models are not too old
 strawman+
async FL

①Hard limit on staleness

Pisces: guided async FL with controlled staleness



37

0

0

0

0

1

1

2

2 3

3

3

4

4

5

5 6

6

7

7

…

      Shorter time-to-accuracy
 strawman+
async FL

0

0

0

0

1

1

2

2 3

3

3

4

4

5

5

6

6

6

…Pisces

Original

Aggregate later

①Hard limit on staleness via pace control at model aggregation

Pisces: guided async FL with controlled staleness

Their used models are not too old

staleness: 0staleness: 3

if the upper bound is 2

staleness: 0staleness: 2

staleness: 1
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①Hard limit on staleness via pace control at model aggregation

‣ Achieved by a neat yet provably effective algorithm

      Shorter time-to-accuracy
 strawman+
async FL

Aggregate?

Speed of

each participant

Time since last 
aggregation

Pisces: guided async FL with controlled staleness

Their used models are not too old
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①Hard limit on staleness via pace control at model aggregation

‣ Achieved by a neat yet provably effective algorithm

      Shorter time-to-accuracy
 strawman+
async FL

Aggregate?

Speed of

each participant

Time since last 
aggregation

Guarantees 
convergence

Pisces: guided async FL with controlled staleness

Their used models are not too old
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①Hard limit on staleness via pace control at model aggregation

‣ Achieved by a neat yet provably effective algorithm


② Soft limit on staleness via informed participant selection

‣ Clients with higher score are selected more


‣ Definition of score  for client :


                  

Ui i

Ui =
1

(τ̃i + 1)β

Potential of low staleness

× |Bi|
1

|Bi| ∑
k∈Bi

Loss(k)2

Data quality

      Shorter time-to-accuracy
 strawman+
async FL

Pisces: guided async FL with controlled staleness

Their used models are not too old
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End-to-end efficiency

① Time-to-accuracy

MNIST FEMNIST CIFAR-10 StackOverflow

Pisces: guided async FL with controlled staleness
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End-to-end efficiency

① Time-to-accuracy:


up to 2  speedup×

2.0× 1.8× 1.6×

1.9×

MNIST FEMNIST CIFAR-10 StackOverflow

Major competitors

[1] Oort: Efficient federated learning via guided participant selection

Oort (OSDI ’21)

- SOTA sync FL

- Coupling speed and data quality

…

Pisces: guided async FL with controlled staleness
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End-to-end efficiency

Major competitors Oort (OSDI ’21)

- SOTA sync FL

- Coupling speed and data quality

FedBuf1 (AISTATS ’22)

- SOTA async FL

- No bounded staleness

- No preference on data quality

… …

① Time-to-accuracy:


up to 2  speedup×

MNIST FEMNIST CIFAR-10 StackOverflow

1.2× 1.6× 1.1×

1.9×

[1] Federated learning with buffered asynchronous aggregation

Pisces: guided async FL with controlled staleness



44

End-to-end efficiency

Major competitors

…

① Time-to-accuracy:


up to 2  speedup×

② Traffic-to-accuracy:

No extra or even less

0
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200

CIFAR10 StackOverflow
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Tr
affi

c 
to
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. 
(G

B)

0.00
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0.25

0.38

0.50

MNIST FEMNIST

0.47

0.20

0.41

0.20

0.35

0.16Pisces Oort FedBuf

MNIST FEMNIST CIFAR-10 StackOverflow

FedBuf1 (AISTATS ’22)

- SOTA async FL

- No bounded staleness

- No preference on data quality

Oort (OSDI ’21)

- SOTA sync FL

- Coupling speed and data quality

…

Pisces: guided async FL with controlled staleness
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To boost efficiency in the presence of stragglers,

the demands for clients' speed and data quality can be


decoupled, with staleness carefully eliminated. SoCC ‘22

Pisces: guided async FL with eliminated staleness
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My Work: build private and efficient cross-device FL

Efficient asynchronous training (SoCC ’22)

Secure participant selection (Security ’24)

Time-to-accuracy…

Target 
acc

Time

Weak privacy 
attackers

Strong privacy 
attackers

Dropout-resilient & pipeline-accelerated distributed differential privacy (EuroSys ’24)

Data leakage…
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e.g., data reconstruction1 (Security ’23)

[1] Gradient Obfuscation Gives a False Sense of Security in Federated Learning

Data leakage…

The need for distributed differential privacy
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Secure aggregation12 

(CCS ’17, ‘20)

[1] Practical secure aggregation for privacy-preserving machine learning

[2] Secure Single-Server Aggregation with (Poly) Logarithmic Overhead

To conceal local updates?

The need for distributed differential privacy
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① Local update

② Masked 
local update

④ Aggregated update

Secure aggregation 
 

③ Masks cancel out!

The need for distributed differential privacy

To conceal local updates?
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The need for distributed differential privacy

Differential Privacy1 

[1] Calibrating Noise to Sensitivity in Privacy Data Analysis

To also perturb the aggregated update?
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The need for distributed differential privacy

  DP ensures that          

be insensitive to the impact of 


any single local update in 

local 
updates

= A( )
noisy aggregated update

random noise

= f( ) +

For enhanced privacySacrifice the precision

Differential Privacy1 

[1] Calibrating Noise to Sensitivity in Privacy Data Analysis

aggregation

To also perturb the aggregated update?



52

① Slightly noisy 
local update

② Masked 
slightly noisy 
local update

④ Adequately noisy 
aggregated update

Secure aggregation 
 

③ Masks cancel out!

The need for distributed differential privacy

⓪ Global privacy budget   Calculate the minimum required noise for each roundϵ →

To also perturb the aggregated update?
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1. Privacy Issue: caused by client dropout

- Client dropout can occur anytime

Secure aggregation

Three practical issues in distributed DP
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1. Privacy Issue: caused by client dropout

- Client dropout can occur anytime

Client behaviors simulated with 100 volatile 
users from the FLASH dataset1 (WWW ‘21)

[1] Characterizing impacts of heterogeneity in federated learning upon large-scale smartphone data

Secure aggregation

Three practical issues in distributed DP
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1. Privacy Issue: caused by client dropout

- Client dropout can occur anytime

- Insufficient noise for target privacy

Three practical issues in distributed DP
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1. Privacy Issue: caused by client dropout

- Client dropout can occur anytime

- Insufficient noise for target privacy

CIFAR-10 
Testbed

CIFAR-100 
Testbed

Three practical issues in distributed DP

Privacy budget = 6 Privacy budget = 6
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1. Privacy Issue: caused by client dropout

- Client dropout can occur anytime

- Insufficient noise for target privacy

- Naive solutions and their limitations


- Early: early stop when budget runs out—hurts utility

Privacy budget = 6

CIFAR-10 
Testbed

CIFAR-100 
Testbed

Three practical issues in distributed DP
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1. Privacy Issue: caused by client dropout

- Client dropout can occur anytime

- Insufficient noise for target privacy

- Naive solutions and their limitations


- Early: early stop when budget runs out—hurts utility

- Con: proactively add more noise—requires expertise

Privacy budget = 6

CIFAR-10 CIFAR-100

Three practical issues in distributed DP

Too optimistic: privacy compromised
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1. Privacy Issue: caused by client dropout

- Client dropout can occur anytime

- Insufficient noise for target privacy

- Naive solutions and their limitations


- Early: early stop when budget runs out—hurts utility

- Con: proactively add more noise—requires expertise

Privacy budget = 6

CIFAR-10 CIFAR-100

Three practical issues in distributed DP

Too pessimistic: utility may or may not suffer
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Goal: achieve the best privacy-utility tradeoff without domain knowledge

Dropout-resilient noise enforcement
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Goal: achieve the best privacy-utility tradeoff without domain knowledge

Intuition: add-then-remove


- Each client first adds excessive noise as separate components

Excessive Level

Necessary Level

Noise

Negation 
of Noise

Noise 
Addition

Noise 
Removal

Result

<latexit sha1_base64="eLPntqCF0tl9Mf+DHCjvHOxCm7c=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeClx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1FjpoT8blCtu1V2ArBMvJxXI0RyUv/rDmKURSsME1brnuYnxM6oMZwJnpX6qMaFsQkfYs1TSCLWfLS6dkQurDEkYK1vSkIX6eyKjkdbTKLCdETVjverNxf+8XmrCWz/jMkkNSrZcFKaCmJjM3yZDrpAZMbWEMsXtrYSNqaLM2HBKNgRv9eV10r6qetfV2n2tUm/kcRThDM7hEjy4gTo0oAktYBDCM7zCmzNxXpx352PZWnDymVP4A+fzB6NIjXY=</latexit>

}

C
ou

pl
ed

Excessive Level

Necessary Level

Dropout-resilient noise enforcement
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Goal: achieve the best privacy-utility tradeoff without domain knowledge

Intuition: add-then-remove


- Each client first adds excessive noise as separate components

- After aggregation, unnecessary ones are removed by the server

Excessive Level

Necessary Level

Noise

Negation 
of Noise

Noise 
Addition

Noise 
Removal

Result

<latexit sha1_base64="eLPntqCF0tl9Mf+DHCjvHOxCm7c=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeClx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1FjpoT8blCtu1V2ArBMvJxXI0RyUv/rDmKURSsME1brnuYnxM6oMZwJnpX6qMaFsQkfYs1TSCLWfLS6dkQurDEkYK1vSkIX6eyKjkdbTKLCdETVjverNxf+8XmrCWz/jMkkNSrZcFKaCmJjM3yZDrpAZMbWEMsXtrYSNqaLM2HBKNgRv9eV10r6qetfV2n2tUm/kcRThDM7hEjy4gTo0oAktYBDCM7zCmzNxXpx352PZWnDymVP4A+fzB6NIjXY=</latexit>

}

C
ou

pl
ed

Excessive Level

Necessary Level

Dropout-resilient noise enforcement



63

Goal: achieve the best privacy-utility tradeoff without domain knowledge

Intuition: add-then-remove


- Each client first adds excessive noise as separate components

- After aggregation, unnecessary ones are removed by the server


Concrete example

Sampled clients |S| = 4

Minimum necessary noise level σ2
* = 1

Dropout-resilient noise enforcement
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Goal: achieve the best privacy-utility tradeoff without domain knowledge

Intuition: add-then-remove


- Each client first adds excessive noise as separate components

- After aggregation, unnecessary ones are removed by the server


Concrete example

     to tolerate up to 2 clients to drop

n1,2 ∼ χ(1/6)

n2,2 ∼ χ(1/6)

n3,2 ∼ χ(1/6)

n4,2 ∼ χ(1/6)

Each client adds noise 

n1,0 ∼ χ(1/4)

n2,0 ∼ χ(1/4)

n3,0 ∼ χ(1/4)

n4,0 ∼ χ(1/4)

n1,1 ∼ χ(1/12)

n2,1 ∼ χ(1/12)

n3,1 ∼ χ(1/12)

n4,1 ∼ χ(1/12)

ni ∼ χ(1/2)Clients

Sampled clients |S| = 4

Dropout tolerance t = 2,

Minimum necessary noise level σ2
* = 1

Add

Dropout-resilient noise enforcement
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Goal: achieve the best privacy-utility tradeoff without domain knowledge

Intuition: add-then-remove
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- After aggregation, unnecessary ones are removed by the server


Concrete example

     to tolerate up to 2 clients to drop

n1,2 ∼ χ(1/6)

n2,2 ∼ χ(1/6)

n3,2 ∼ χ(1/6)

n4,2 ∼ χ(1/6)

Each client adds noise 

n1,0 ∼ χ(1/4)

n2,0 ∼ χ(1/4)

n3,0 ∼ χ(1/4)

n4,0 ∼ χ(1/4)

n1,1 ∼ χ(1/12)

n2,1 ∼ χ(1/12)

n3,1 ∼ χ(1/12)

n4,1 ∼ χ(1/12)

ni ∼ χ(1/2)Clients

Sampled clients |S| = 4

Dropout tolerance t = 2,

Minimum necessary noise level σ2
* = 1

Add

Dropout-resilient noise enforcement



66

Goal: achieve the best privacy-utility tradeoff without domain knowledge

Intuition: add-then-remove


- Each client first adds excessive noise as separate components

- After aggregation, unnecessary ones are removed by the server


Concrete example

     to tolerate up to 2 clients to drop

n1,2 ∼ χ(1/6)

n2,2 ∼ χ(1/6)

n3,2 ∼ χ(1/6)

n4,2 ∼ χ(1/6)

Each client adds noise 

n1,0 ∼ χ(1/4)

n2,0 ∼ χ(1/4)

n3,0 ∼ χ(1/4)

n4,0 ∼ χ(1/4)

n1,1 ∼ χ(1/12)

n2,1 ∼ χ(1/12)

n3,1 ∼ χ(1/12)

n4,1 ∼ χ(1/12)

ni ∼ χ(1/2)Clients

Sampled clients |S| = 4

Dropout tolerance t = 2,

Minimum necessary noise level σ2
* = 1

Add

Then remove

Achieve target noise σ2
∗
= 1σ

2
∗
= 1

n2,0

n1,0

n3,0

n4,0

n1,1

n2,1

n3,1

n4,1

n1,2

n2,2

n3,2

n4,2

To rem
ove

If 0 client drops

Dropout-resilient noise enforcement
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Goal: achieve the best privacy-utility tradeoff without domain knowledge

Intuition: add-then-remove


- Each client first adds excessive noise as separate components

- After aggregation, unnecessary ones are removed by the server


Concrete example

Then remove

Achieve target noise σ2
∗
= 1σ

2
∗
= 1

n2,0

n1,0

n3,0

n4,0

n1,1

n2,1

n3,1

n4,1

n1,2

n2,2

n3,2

n4,2

To rem
ove

If 0 client drops

n1,0 n1,1 n1,2

n2,0 n2,1 n2,2

n3,0 n3,1 n3,2

n4,0 n4,1 n4,2

To rem
ove

Achieve target noise σ2
∗
= 1σ

2
∗
= 1

If 1 client drops

Dropout-resilient noise enforcement

     to tolerate up to 2 clients to drop

n1,2 ∼ χ(1/6)

n2,2 ∼ χ(1/6)

n3,2 ∼ χ(1/6)

n4,2 ∼ χ(1/6)

Each client adds noise 

n1,0 ∼ χ(1/4)

n2,0 ∼ χ(1/4)

n3,0 ∼ χ(1/4)

n4,0 ∼ χ(1/4)

n1,1 ∼ χ(1/12)

n2,1 ∼ χ(1/12)

n3,1 ∼ χ(1/12)

n4,1 ∼ χ(1/12)

ni ∼ χ(1/2)Clients

Sampled clients |S| = 4

Dropout tolerance t = 2,

Minimum necessary noise level σ2
* = 1

Add
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Goal: achieve the best privacy-utility tradeoff without domain knowledge

Intuition: add-then-remove


- Each client first adds excessive noise as separate components

- After aggregation, unnecessary ones are removed by the server


Concrete example

Then remove

Achieve target noise σ2
∗
= 1σ

2
∗
= 1

n2,0

n1,0

n3,0

n4,0

n1,1

n2,1

n3,1

n4,1

n1,2

n2,2

n3,2

n4,2

To rem
ove

If 0 client drops

n1,0 n1,1 n1,2

n2,0 n2,1 n2,2

n3,0 n3,1 n3,2

n4,0 n4,1 n4,2

To rem
ove

Achieve target noise σ2
∗
= 1σ

2
∗
= 1

If 1 client drops If 2 client drops

Dropout-resilient noise enforcement

     to tolerate up to 2 clients to drop

n1,2 ∼ χ(1/6)

n2,2 ∼ χ(1/6)

n3,2 ∼ χ(1/6)

n4,2 ∼ χ(1/6)

Each client adds noise 

n1,0 ∼ χ(1/4)

n2,0 ∼ χ(1/4)

n3,0 ∼ χ(1/4)

n4,0 ∼ χ(1/4)

n1,1 ∼ χ(1/12)

n2,1 ∼ χ(1/12)

n3,1 ∼ χ(1/12)

n4,1 ∼ χ(1/12)

ni ∼ χ(1/2)Clients

Sampled clients |S| = 4

Dropout tolerance t = 2,

Minimum necessary noise level σ2
* = 1

Add
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Goal: achieve the best privacy-utility tradeoff without domain knowledge

Intuition: add-then-remove

Concrete example

Formal definition: XNoise


- Noise addition: decompose Client ’s added noise  into  

components: , , and  


- Noise removal: when there are  clients dropping out, the noise components  
contributed by the surviving clients  with the index  becomes excessive 
and is removed by the server

i ni ∼ χ( σ2
*

|S| − t ) t + 1

ni =
t

∑
k=0

ni,k ni,0 ∼ χ( σ2
*

|S| ) ni,k ∼ χ( σ2
*

(|S| − k + 1)(|S| − k) ) (k ∈ [t])

|D | ni,k

i ∈ S∖D k > |D |

Dropout-resilient noise enforcement
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Goal: achieve the best privacy-utility tradeoff without domain knowledge

Intuition: add-then-remove

Concrete example

Formal definition: XNoise

Preventing adversarial server from understating dropout


- Mislead survivals to remove more noise than needed

Dropout-resilient noise enforcement

Secure aggregation
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Goal: achieve the best privacy-utility tradeoff without domain knowledge

Intuition: add-then-remove

Concrete example

Formal definition: XNoise

Preventing adversarial server from understating dropout


- Mislead survivals to remove more noise than needed

- Enable verification via a secure signature scheme

Dropout-resilient noise enforcement

Secure aggregation
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Effectiveness

Dropout-resilient noise enforcement
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Improves privacy

Privacy budget = 6
Effectiveness

Dropout-resilient noise enforcement
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Improves privacy

without sacrificing 
final model utility

Dropout rates

Datasets

Privacy budget = 6
Effectiveness

Dropout-resilient noise enforcement
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Dropout-resilient noise enforcement

without sacrificing 
final model utility

Dropout rates

Datasets

and incurs 
acceptable 
( ) 
runtime cost
≤ 34 %

Effectiveness

Example: no dropout

FEMNIST@CNN FEMNIST@ResNet18 CIFAR10@ResNet18 CIFAR10@VGG19

Improves privacy

Privacy budget = 6
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1. Privacy Issue: caused by client dropout

2.  Performance Issue: expensive use of secure aggregation

Three practical issues in distributed DP
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1. Privacy Issue: caused by client dropout

2.  Performance Issue: expensive use of secure aggregation


- Extensive use of secret sharing and pairwise masking

- Dominates the training time (at least 91%)

Three practical issues in distributed DP

original secure aggregation: SecAgg
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1. Privacy Issue: caused by client dropout

2.  Performance Issue: expensive use of secure aggregation


- Extensive use of secret sharing and pairwise masking

- Dominates the training time (at least 91%)

- Follow-up solutions


- e.g. SecAgg+: improves asymptotically

Three practical issues in distributed DP

original secure aggregation: SecAgg
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1. Privacy Issue: caused by client dropout

2.  Performance Issue: expensive use of secure aggregation


- Extensive use of secret sharing and pairwise masking

- Dominates the training time (at least 91%)

- Follow-up solutions have inefficiencies


- e.g. SecAgg+: improves asymptotically, but not so helpful in small-scale practice1

SOTA secure aggregation: SecAgg+

[1] Towards federated learning at scale: system design, MLSys ‘19

Three practical issues in distributed DP

original secure aggregation: SecAgg
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Goal: leverage the underutilized resources in the system level

Pipeline-parallel acceleration
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Goal: leverage the underutilized resources in the system level

Approach:

- Step 1: Identify the types of system resources

Secure aggregation

s-comp: the compute resources 
(e.g., CPU, GPU, and memory) of 
the server 

c-comp: the compute resources of 
clients 

comm: the network resource used 
for server-client communication

Pipeline-parallel acceleration
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Goal: leverage the underutilized resources in the system level

Approach:

- Step 1: Identify the types of system resources

- Step 2: Group consecutive operations that use the same system resources

Secure aggregation

Pipeline-parallel acceleration
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Goal: leverage the underutilized resources in the system level

Approach:

- Step 1: Identify the types of system resources

- Step 2: Group consecutive operations that use the same system resources

- Step 3: Evenly partition each client’s update into chunks and pipeline their processing

Time

Chunk 1

Chunk 2

Chunk 3

1 (c-comp)Stage 2 (comm) 3 (s-comp) 4 (comm) 5 (c-comp)

Pipeline-parallel acceleration
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Goal: leverage the underutilized resources in the system level

Approach:

- Step 1: Identify the types of system resources

- Step 2: Group consecutive operations that use the same system resources

- Step 3: Evenly partition each client’s update into chunks and pipeline their processing


- Solve an optimization problem to determine the optimal number of chunk, m*

m* = arg min
m∈N+

fa,m

fs,c = bs,c + ls Definition of the finish time of 
Chunk  at Stage m a

s . t .

Intra-chunk sequential 
executionos,c = {0, if s = 0,

fs−1,c

bs,c = max{os,c, rs,c}

rs,c =
0, if s = 0 and c = 0,
fq,m or  ⊥ , if s ≠ 0 and c = 0,
fs,c−1, otherwise

Exclusive allocation 
& Inter-chunk sequential execution

Pipeline-parallel acceleration
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Effectiveness:
① A maximum speedup of 2.4×

Case study: CIFAR10 @ 
VGG19, dropout rate = 30%

w/ or w/o

pipelining

Pipeline-parallel acceleration
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Effectiveness:

w/o or w/

our noise enforcement

Pipeline-parallel acceleration

① A maximum speedup of 2.4×

Case study: CIFAR10 @ 
VGG19, dropout rate = 30%
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Effectiveness:

Implemented using 
SecAgg or SecAgg+

Pipeline-parallel acceleration

① A maximum speedup of 2.4×

Case study: CIFAR10 @ 
VGG19, dropout rate = 30%
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Effectiveness:

② 
Larger 
models 

gain 
more

1M

11M

11M

20M

Pipeline-parallel acceleration

③ It scales 
with 


number of 
participants

16

100

④ The gains are consistent across different dropout rates

① A maximum speedup of 2.4×
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1. Privacy Issue: caused by client dropout

2.  Performance Issue: expensive nature of secure aggregation

Distributed DP can be made more practical,

by enforcing target privacy in the presence of client dropout


and optimizing execution efficiency. EuroSys ‘24

Three practical issues in distributed DP
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1. Privacy Issue: caused by client dropout

2.  Performance Issue: expensive use of secure aggregation

3.  Security Issue: assume honest majority among participants

Three practical issues in distributed DP

Secure 
aggregation

Assum
ption
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1. Privacy Issue: caused by client dropout

2.  Performance Issue: expensive use of secure aggregation

3.  Security Issue: assume honest majority among participants


- Adversarial server can game participant selection

Secure 
aggregation

Assum
ption

Reality
vs

Three practical issues in distributed DP
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1. Privacy Issue: caused by client dropout

2.  Performance Issue: expensive use of secure aggregation

3.  Security Issue: assume honest majority among participants


- Adversarial server can game participant selection

- Secure aggregation breaks

Dishonest participant rate

0

1

At
ta

ck
er

 s
uc

ce
ss

 ra
te

some threshold

Three practical issues in distributed DP
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1. Privacy Issue: caused by client dropout

2.  Performance Issue: expensive use of secure aggregation

3.  Security Issue: assume honest majority among participants


- Adversarial server can game participant selection

- Secure aggregation breaks; distributed DP degrades

Three practical issues in distributed DP

Dishonest participant rate

0

1
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1. Privacy Issue: caused by client dropout

2.  Performance Issue: expensive use of secure aggregation

3.  Security Issue: assume honest majority among participants


- Adversarial server can game participant selection

- Secure aggregation breaks; distributed DP degrades

- The problem has been overlooked: 

Three practical issues in distributed DP

Even for a reputable company

External Hacker

Disgruntled Employee

“Mostly Honest”
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Goal: to know whether the server manipulates the selection

Self-sampling with verifiable randomness
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Self-sampling with verifiable randomness

Goal: to know whether the server manipulates the selection

Secure random selection



98

Self-sampling with verifiable randomness

Goal: to know whether the server manipulates the selection

Secure random selection


- Self-sampling


- Each client  in the population


- Join if  for some 
i

ri ∈ [0,R) < pR p ∈ (0,1)
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Self-sampling with verifiable randomness

Goal: to know whether the server manipulates the selection

Secure random selection


- Self-sampling

- Mutual verification


- Each client  claiming to join


- Proceed only if  for 
i

rj < pR ∀j ≠ i
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Self-sampling with verifiable randomness

Goal: to know whether the server manipulates the selection

Secure random selection


- Self-sampling

- Mutual verification


- Each client  claiming to join


- Proceed only if  for 
i

rj < pR ∀j ≠ i

forge
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Self-sampling with verifiable randomness

Goal: to know whether the server manipulates the selection

Secure random selection


- Self-sampling

- Mutual verification

- Prevent forging: verifiable random functions (VRFs)
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Self-sampling with verifiable randomness

Goal: to know whether the server manipulates the selection

Secure random selection


- Self-sampling

- Mutual verification

- Prevent forging: verifiable random functions (VRFs)


- Assume each client  has a key pair  with integrity guaranteed by a PKI


- For each , client  also verifies that 


- The test passes only if 

i (ski, pki)
j ≠ i i VRF.ver(pkj, r, βj, πj) = 1

βj, πj = VRF.eval(skj, r)

Round index, publicsecret key, bound to j

Neither can be manipulated!
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Self-sampling with verifiable randomness

Goal: to know whether the server manipulates the selection

Secure random selection


- Self-sampling

- Mutual verification

- Prevent forging: verifiable random functions (VRFs)


Secure informed selection
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Self-sampling with verifiable randomness

Goal: to know whether the server manipulates the selection

Secure random selection


- Self-sampling

- Mutual verification

- Prevent forging: verifiable random functions (VRFs)


Secure informed selection

Have a 
favor!

Data quality

Speed

High

Low

Priority

Example:

Oort
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Self-sampling with verifiable randomness

Goal: to know whether the server manipulates the selection

Secure random selection


- Self-sampling

- Mutual verification

- Prevent forging: verifiable random functions (VRFs)


Secure informed selection

Have a 
favor!

Direct: refer to fake metrics

Indirect: optimize the referred metrics

Gaming
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Self-sampling with verifiable randomness

Goal: to know whether the server manipulates the selection

Secure random selection


- Self-sampling

- Mutual verification

- Prevent forging: verifiable random functions (VRFs)


Secure informed selection

- Prevent gaming: verifiable randomness has to be introduced to the last mile

Have a 
favor!≈

Secure random selection
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Self-sampling with verifiable randomness

Goal: to know whether the server manipulates the selection

Secure random selection


- Self-sampling

- Mutual verification

- Prevent forging: verifiable random functions (VRFs)


Secure informed selection

- Prevent gaming: verifiable randomness has to be introduced to the last mile

- Achieve the expected effect of selection: the server refine the population in advance

≈+ Have a 
favor!

Data quality

Speed To retain

To exclude

Secure random selectionPopulation refinement
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Lotto: Self-sampling with verifiable randomness

Effectiveness

① Provably aligns the fractions of compromised participants to the base rate of dishonest 
clients in the population

Random selection
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Effectiveness

① Provably aligns the fractions of compromised participants to the base rate of dishonest 
clients in the population

Random selection

Assumption:

• Population size n = 200k

• 0.1% dishonest clients in 

the population

10% dishonest clients in 
the participant

Lotto: Self-sampling with verifiable randomness
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Effectiveness

①Provably aligns the fractions of compromised participants to the base rate of dishonest 
clients in the population


② with acceptable runtime cost ( ) and negligible network overhead ( )≤ 10 % ≤ 1 %

Random selection

Lotto: Self-sampling with verifiable randomness
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Effectiveness

Random selection

①Provably aligns the fractions of compromised participants to the base rate of dishonest 
clients in the population


② with acceptable runtime cost ( ) and negligible network overhead ( )≤ 10 % ≤ 1 %

Lotto: Self-sampling with verifiable randomness

Informed selection

①Security, overhead: similar

② Effectiveness of approximation: achieve comparable time-to-acc?
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FEMNIST@CNN OpenImage@MobileNet Reddit@Albert

Lotto: Self-sampling with verifiable randomness

Effectiveness

Random selection

Informed selection

①Provably aligns the fractions of compromised participants to the base rate of dishonest 
clients in the population


② with acceptable runtime cost ( ) and negligible network overhead ( )≤ 10 % ≤ 1 %

①Security, overhead: similar

② Effectiveness of approximation: achieve comparable time-to-acc!
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1. Privacy Issue: caused by client dropout

2.  Performance Issue: expensive use of secure aggregation

3.  Security Issue: assume honest majority among participants

Three practical issues in distributed DP

Distributed DP can be made more secure,

by preventing the adversary from 

manipulating the participant selection 
process with verifiable randomness. Security ‘24
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My Work: build private and efficient cross-device FL

Efficient asynchronous training (SoCC ’22)

Dropout-resilient & pipeline-accelerated distributed differential privacy (EuroSys ’24)

Secure participant selection (Security ’24)

Time-to-accuracy…

Target 
acc

Time

Efficiency-
Only

Privacy-
First

Data leakage…
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Future Work (3)
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Future Work (1/3)

1. Mitigating Stragglers atop Distributed DP

- Existing async FL is incompatible with distributed DP

- Straggler problems remain when distributed DP is employed

- Existing explorations fall short in applicability/model utility
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Future Work (2/3)

1. Privacy Enhancement of Asynchronous Training

2.  Extension of Federated Unlearning to the Participant Side


- Clients have the right to eliminate the impact of their data on the trained model

- Intermediate results (e.g. aggregated updates) are also sensitive and made public

- Existing research has overlooked this issue
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Future Work (3/3)

1. Privacy Enhancement of Asynchronous Training

2.  Extension of Federated Unlearning to the Participant Side

3. Harmonizing Efficiency, Privacy and Robustness in Single-Server Scenarios 

- The trained model is open to data poisoning and model poisoning

- Identifying malformed local updates contradicts with the spirits of privacy protection

- Existing remedies rely on two-server settings, which falls short in practicality
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