Towards *Private* and *Efficient* Cross-Device Federated Learning

Zhifeng Jiang

Ph.D. Thesis Proposal Defense Advisor: Wei Wang Chairperson: Shuai Wang Committee: Bo Li, Yangqiu Song

Apr 8, 2024

Centralized learning

Centralized learning hurts privacy

Data breaches...

Clearview AI, The Company Whose Database Has Amassed 3 Billion Photos, Hacked

Forbes

Centralized learning hurts privacy

Data breaches...

Forbes Clearview AI, The Company Whose Database Has Amassed 3 Billion Photos, Hacked

Potential abuse...

theguardian Facebook halts use of WhatsApp data for advertising in Europe

Local learning

Local learning suffers from low data quality

Step 1: Participant Selection

Step 2: Local Training

Step 3: Model Aggregation

Cross-Device Applications

Mobile

Google's Keyboard

Cross-Device Applications

Google's Keyboard

Apple's speaker recognition

Huawei's ads recommendation

🗊 😇 💷 » 😑

Brave's news recommendation

Volvo's trajectory prediction

New Tab

Q hacker news

Hacker News

Ch

Cisco's 3D printing Le

Leveno's clogging detection

Firefox's URL bar suggestion

Y Machine Teaching: Building Machine Learni... — https://news.ycombi

Y Redefine statistical significance | Hacker N... — https://news.ycor

× H

Y Ask HN: What is your favorite CS paper? | ... — ht

Q hacker news — Search with Google

Mobile

IoT

Challenge: identify and address the fundamental privacy and efficiency issues in cross-device FL

Challenge: identify and address the fundamental privacy and efficiency issues in cross-device FL

e.g., data reconstruction¹ (Security '23)

Challenge: identify and address the fundamental privacy and efficiency issues in cross-device FL

My Work: build private and efficient cross-device FL

My Work: build private and efficient cross-device FL

My Work: build private and efficient cross-device FL

Stragglers are an efficiency bottleneck in sync FL

Stragglers are an efficiency bottleneck in sync FL

Prioritize clients with high speed

avg. round time \downarrow

Prioritize clients with high speed and data quality

time-to-accuracy = [avg. round time] \times [# rounds]

Prioritize clients with high speed and data quality State-of-the-art: **Oort**¹ (OSDI '21)

- Clients with higher score are selected more
- Definition of score U_i for client *i*:

Prioritize clients with high speed and data quality State-of-the-art: **Oort** (OSDI '21)

Inefficient in achieving the best tradeoff in practice where speed $\propto \frac{1}{\text{data quality}}$

Prioritize clients with high speed and data quality State-of-the-art: **Oort** (OSDI '21)

Prioritize clients with high speed and data quality State-of-the-art: **Oort** (OSDI '21)

Fundamental challenge in sync FL: unpleasant coupling demands for speed and data quality

Can we decouple them?

Can we decouple them?

Sure! If the training is asynchronous

Asynchronous Training

- Select some clients with best data and send them the latest model
- Early aggregate local updates without waiting for some running participants

Asynchronous Training

- Select some clients with best data and send them the latest model
- Early aggregate local updates without waiting for some running participants

Asynchronous Training

- Select some clients with best data and send them the latest model
- Early aggregate local updates without waiting for some running participants

Pisces: guided async FL with controlled staleness

Their used models are not too old

+ strawman

async FL

Shorter time-to-accuracy

1 Hard limit on staleness

1 Hard limit on staleness via pace control at model aggregation

+ strawman

async FL

Shorter time-to-accuracy

1 Hard limit on staleness via pace control at model aggregation

Achieved by a neat yet provably effective algorithm

Their used models are not too old

Guarantees

convergence

+ strawman

async FL

Shorter time-to-accuracy

1 Hard limit on staleness via pace control at model aggregation

Achieved by a neat yet provably effective algorithm

THEOREM 2. Let $\eta_{\ell}^{(q)}$ be the local learning rate of client SGD in the q-th step, and define $\alpha(Q) := \sum_{q=0}^{Q-1} \eta_{\ell}^{(q)}, \beta(Q) := \sum_{q=0}^{Q-1} (\eta_{\ell}^{(q)})^2$. Choosing $\eta_{\ell}^{(q)}Q \leq \frac{1}{L}$ for all local steps $q = 0, \dots, Q-1$, the global model iterates in Pisces achieves the following ergodic convergence rate

$$\frac{1}{T} \sum_{t=0}^{T-1} \left\| \nabla f(w^t) \right\|^2 \le \frac{2 \left(f(w^0) - f^* \right)}{\alpha(Q)T} + \frac{L}{2} \frac{\beta(Q)}{\alpha(Q)} \sigma_\ell^2 + 3L^2 Q \beta(Q) \left(b^2 + 1 \right) \left(\sigma_\ell^2 + \sigma_g^2 + G \right).$$
(4)

Their used models are not too old

+ strawman asvnc FL

Shorter time-to-accuracy

1 Hard limit on staleness via pace control at model aggregation

Achieved by a neat yet provably effective algorithm

2 Soft limit on staleness via informed participant selection

- Clients with higher score are selected more
- Definition of score U_i for client *i*:

$$U_{i} = \frac{1}{(\tilde{\tau}_{i} + 1)^{\beta}} \times |B_{i}| \sqrt{\frac{1}{|B_{i}|} \sum_{k \in B_{i}} Loss(k)^{2}}$$
Potential of low staleness Data quality

Major competitors

Oort (OSDI '21)

- SOTA sync FL
- Coupling speed and data quality

1.9×

40

Oort (OSDI '21)

- SOTA sync FL
- Coupling speed and data quality

FedBuff¹ (AISTATS '22)

- SOTA async FL
- No bounded staleness
- No preference on data quality

Pisces: guided async FL with eliminated staleness

To boost efficiency in the presence of stragglers, the demands for clients' speed and data quality can be decoupled, with staleness carefully eliminated.

My Work: build private and efficient cross-device FL

e.g., data reconstruction¹ (Security '23)

To conceal local updates?

Secure aggregation¹² (CCS '17, '20)

[1] Practical secure aggregation for privacy-preserving machine learning

^[2] Secure Single-Server Aggregation with (Poly) Logarithmic Overhead

To conceal local updates?

To also perturb the aggregated update?

Differential Privacy¹

To also perturb the aggregated update?

Differential Privacy¹

Sacrifice the precision

For enhanced privacy

To also perturb the aggregated update?

(1) Global privacy budget $\epsilon \rightarrow$ Calculate the minimum required noise for each round

- 1. Privacy Issue: caused by client dropout
 - Client dropout can occur anytime

- 1. Privacy Issue: caused by client dropout
 - Client dropout can occur anytime

Client behaviors simulated with 100 volatile users from the FLASH dataset¹ (WWW '21)

- 1. Privacy Issue: caused by client dropout
 - Client dropout can occur anytime
 - Insufficient noise for target privacy

- 1. Privacy Issue: caused by client dropout
 - Client dropout can occur anytime
 - Insufficient noise for target privacy

1. Privacy Issue: caused by client dropout

- Client dropout can occur anytime
- Insufficient noise for target privacy
- Naive solutions and their limitations
 - Early: early stop when budget runs out hurts utility

1. Privacy Issue: caused by client dropout

- Client dropout can occur anytime
- Insufficient noise for target privacy
- Naive solutions and their limitations
 - Early: early stop when budget runs out hurts utility
 - Con: proactively add more noise requires expertise

Too optimistic: privacy compromised

1. Privacy Issue: caused by client dropout

- Client dropout can occur anytime
- Insufficient noise for target privacy
- Naive solutions and their limitations
 - Early: early stop when budget runs out hurts utility
 - Con: proactively add more noise requires expertise

Too pessimistic: utility may or may not suffer

Goal: achieve the best privacy-utility tradeoff without domain knowledge

Goal: achieve the best privacy-utility tradeoff without domain knowledge Intuition: add-then-remove

- Each client first adds excessive noise as separate components

Goal: achieve the best privacy-utility tradeoff without domain knowledge Intuition: add-then-remove

- Each client first adds excessive noise as separate components
- After aggregation, unnecessary ones are removed by the server

Goal: achieve the best privacy-utility tradeoff without domain knowledge Intuition: add-then-remove

- Each client first adds excessive noise as separate components
- After aggregation, unnecessary ones are removed by the server

Concrete example

Sampled clients |S| = 4

Goal: achieve the best privacy-utility tradeoff without domain knowledge Intuition: add-then-remove

- Each client first adds excessive noise as separate components
- After aggregation, unnecessary ones are removed by the server

Concrete example

Sampled clients |S| = 4

Add Dropout tolerance t = 2,

Minimum necessary noise level $\sigma_*^2 = 1$

Each client adds noise $n_i \sim \chi(1/2)$ to tolerate up to 2 clients to drop

$$\begin{array}{ll} n_{1,0} \sim \chi(1/4) & n_{1,1} \sim \chi(1/12) & n_{1,2} \sim \chi(1/6) \\ n_{2,0} \sim \chi(1/4) & n_{2,1} \sim \chi(1/12) & n_{2,2} \sim \chi(1/6) \\ n_{3,0} \sim \chi(1/4) & n_{3,1} \sim \chi(1/12) & n_{3,2} \sim \chi(1/6) \\ n_{4,0} \sim \chi(1/4) & n_{4,1} \sim \chi(1/12) & n_{4,2} \sim \chi(1/6) \end{array}$$

Goal: achieve the best privacy-utility tradeoff without domain knowledge Intuition: add-then-remove

- Each client first adds excessive noise as separate components
- After aggregation, unnecessary ones are removed by the server

Concrete example

Sampled clients |S| = 4

Add Dropout tolerance t = 2,

Clie ↓	nts	Each to to	adds noise p to 2 clie	dds noise $n_i \sim \chi(1/2)$ to 2 clients to drop			
	$n_{1,0} \sim \gamma$	$\chi(1/4)$	$n_{1,1} \sim$	$\chi(1/12)$	$n_{1,2} \sim$	$\chi(1/6)$	
	$n_{2,0} \sim 2$	$\chi(1/4)$	$n_{2,1} \sim$	$\chi(1/12)$	$n_{2,2} \sim$	$\chi(1/6)$	
	$n_{3,0} \sim 2$	$\chi(1/4)$	$n_{3,1} \sim$	$\chi(1/12)$	$n_{3,2} \sim$	$\chi(1/6)$	
\bigcirc	$n_{4,0} \sim 2$	$\chi(1/4)$	$n_{4,1} \sim$	$\chi(1/12)$	$n_{4,2} \sim$	$\chi(1/6)$	

Goal: achieve the best privacy-utility tradeoff without domain knowledge Intuition: add-then-remove

- Each client first adds excessive noise as separate components
- After aggregation, unnecessary ones are removed by the server

Concrete example

Sampled clients |S| = 4

Add Dropout tolerance
$$t = 2$$
,

Clients Each client adds noise $n_i \sim$ to tolerate up to 2 clients to						$\chi(1/2)$ lrop	
	$n_{1,0} \sim 2$	$\chi(1/4)$	$n_{1,1} \sim$	$\chi(1/12)$	$n_{1,2} \sim$	$\chi(1/6)$	
	$n_{2,0} \sim 2$	$\chi(1/4)$	$n_{2,1} \sim$	$\chi(1/12)$	$n_{2,2} \sim$	$\chi(1/6)$	
	$n_{3,0} \sim 2$	$\chi(1/4)$	$n_{3,1} \sim$	$\chi(1/12)$	$n_{3,2} \sim$	$\chi(1/6)$	
	$n_{4,0} \sim 2$	$\chi(1/4)$	$n_{4,1} \sim$	$\chi(1/12)$	$n_{4,2} \sim$	$\chi(1/6)$	

Goal: achieve the best privacy-utility tradeoff without domain knowledge Intuition: add-then-remove

- Each client first adds excessive noise as separate components
- After aggregation, unnecessary ones are removed by the server

Concrete example

Sampled clients |S| = 4

Add Dropout tolerance
$$t = 2$$
,

Clie ↓	ents	Each client adds noise $n_i \sim \chi(1/2)$ to tolerate up to 2 clients to drop						
	$n_{1,0} \sim$	$\chi(1/4)$	$n_{1,1} \sim$	$\chi(1/12)$	$n_{1,2} \sim \chi$	(1/6)		
	$n_{2,0} \sim$	$\chi(1/4)$	$n_{2,1} \sim$	$\chi(1/12)$	$n_{2,2} \sim \chi$	(1/6)		
	$n_{3,0} \sim$	$\chi(1/4)$	$n_{3,1} \sim$	$\chi(1/12)$	$n_{3,2} \sim \chi$	(1/6)		
	$n_{4,0} \sim$	$\chi(1/4)$	$n_{4,1} \sim$	$\chi(1/12)$	$n_{4,2} \sim \chi$	$\chi(1/6)$		

Goal: achieve the best privacy-utility tradeoff without domain knowledge Intuition: add-then-remove

- Each client first adds excessive noise as separate components
- After aggregation, unnecessary ones are removed by the server

Concrete example

Sampled clients |S| = 4

Add Dropout tolerance
$$t = 2$$
,

Clie ↓	Each client adds noise $n_i \sim \chi(1/$ to tolerate up to 2 clients to drop					
	$n_{1,0} \sim$	$\chi(1/4)$	$n_{1,1} \sim$	$\chi(1/12)$	$n_{1,2} \sim$	$\chi(1/6)$
	$n_{2,0} \sim$	$\chi(1/4)$	$n_{2,1} \sim$	$\chi(1/12)$	$n_{2,2} \sim$	$\chi(1/6)$
	$n_{3,0} \sim$	$\chi(1/4)$	$n_{3,1} \sim$	$\chi(1/12)$	$n_{3,2} \sim$	$\chi(1/6)$
	$n_{4,0} \sim$	$\chi(1/4)$	$n_{4,1} \sim$	$\chi(1/12)$	$n_{4,2} \sim$	$\chi(1/6)$

Goal: achieve the best privacy-utility tradeoff without domain knowledge Intuition: add-then-remove

Concrete example

Formal definition: XNoise

Noise addition: decompose Client *i*'s added noise $n_i \sim \chi\left(\frac{\sigma_*^2}{|S| - t}\right)$ into t + 1

components:
$$n_i = \sum_{k=0}^t n_{i,k}, n_{i,0} \sim \chi\left(\frac{\sigma_*^2}{|S|}\right)$$
, and $n_{i,k} \sim \chi\left(\frac{\sigma_*^2}{(|S| - k + 1)(|S| - k)}\right) (k \in [t])$

- Noise removal: when there are |D| clients dropping out, the noise components $n_{i,k}$ contributed by the surviving clients $i \in S \setminus D$ with the index k > |D| becomes excessive and is removed by the server

Goal: achieve the best privacy-utility tradeoff without domain knowledge Intuition: add-then-remove

Concrete example

Formal definition: XNoise

Preventing adversarial server from understating dropout

- Mislead survivals to remove more noise than needed

Goal: achieve the best privacy-utility tradeoff without domain knowledge Intuition: add-then-remove

Concrete example

Formal definition: XNoise

Preventing adversarial server from understating dropout

- Mislead survivals to remove more noise than needed
- Enable verification via a secure signature scheme

Orig --- XNoise

Effectiveness
Dropout-resilient noise enforcement

Effectiveness

Improves privacy

Dropout-resilient noise enforcement

Effectiveness

Dropout rates

without sacrificing final model utility

Improves privacy

	d	0		10%		20%		30%		40%	
		Ori	XNo								
ata	F	61.3	61.4	61.4	61.4	61.2	61.4	61.2	61.2	61.4	61.5
ase	С	66.5	66.3	66.7	66.9	66.6	65.7	64.3	65.7	63.8	64.2
sts	R	2169	2142	2158	2179	2286	2285	2294	2317	2299	2329

Dropout-resilient noise enforcement

- 1. Privacy Issue: caused by client dropout
- 2. **Performance** Issue: expensive use of secure aggregation

- 1. Privacy Issue: caused by client dropout
- 2. Performance Issue: expensive use of secure aggregation
 - Extensive use of secret sharing and pairwise masking

- 1. Privacy Issue: caused by client dropout
- 2. Performance Issue: expensive use of secure aggregation
 - Extensive use of secret sharing and pairwise masking
 - Dominates the training time (at least 91%)

original secure aggregation: SecAgg

- 1. Privacy Issue: caused by client dropout
- 2. **Performance** Issue: expensive use of secure aggregation
 - Extensive use of secret sharing and pairwise masking
 - Dominates the training time (at least 91%)
 - Follow-up solutions
 - e.g. SecAgg+: improves asymptotically

original secure aggregation: SecAgg

- 1. Privacy Issue: caused by client dropout
- 2. Performance Issue: expensive use of secure aggregation
 - Extensive use of secret sharing and pairwise masking
 - Dominates the training time (at least 91%)
 - Follow-up solutions have inefficiencies
 - e.g. SecAgg+: improves asymptotically, but not so helpful in small-scale practice¹

Goal: leverage the underutilized resources in the system level

Goal: leverage the underutilized resources in the system level

Approach:

- Step 1: Identify the types of system resources

s-comp: the compute resources (e.g., CPU, GPU, and memory) of the server

- **c-comp**: the compute resources of clients
- **comm**: the network resource used for server-client communication

Goal: leverage the underutilized resources in the system level

Approach:

- Step 1: Identify the types of system resources
- Step 2: Group consecutive operations that use the same system resources

Step	Operation	Stage (Resource)		
1	Clients encode updates.			
2	Clients generate security keys.	1 (c-comp)		
3	Clients establish shared secrets.			
4	Clients mask encoded updates.			
5	Clients upload masked updates.	2 (comm)		
6	Server deals with dropout.			
7	Server computes aggregate update.	3 (s-comp)		
8	Server updates the global model.			
9	Server dispatches the aggregate.	4 (comm)		
10	Clients decode the aggregate.	$F(\alpha - \alpha \alpha m n)$		
11	Clients use the aggregate.	J (C COMP)		

Goal: leverage the underutilized resources in the system level

Approach:

- Step 1: Identify the types of system resources
- Step 2: Group consecutive operations that use the same system resources
- Step 3: Evenly partition each client's update into chunks and pipeline their processing

Goal: leverage the underutilized resources in the system level

Approach:

- Step 1: Identify the types of system resources _
- Step 2: Group consecutive operations that use the same system resources _
- Step 3: Evenly partition each client's update into chunks and pipeline their processing _
 - Solve an optimization problem to determine the optimal number of chunk, m*

$$m^{*} = \arg\min_{m \in N_{+}} f_{a,m}$$

$$s.t. \quad f_{s,c} = b_{s,c} + l_{s}$$

$$b_{s,c} = \max\{o_{s,c}, r_{s,c}\}$$

$$Definition of the finish time of$$

$$chunk m at Stage a$$

$$f_{s,c-1}, \quad \text{otherwise}$$

$$Exclusive allocation$$

$$\delta \text{ Inter-chunk sequential execution}$$

& Inter-chunk sequential execution

85

Effectiveness:

(1) A maximum speedup of $2.4\times$

Effectiveness:

(1) A maximum speedup of $2.4\times$

Effectiveness:

(1) A maximum speedup of $2.4\times$

88

Effectiveness:

① A maximum speedup of 2.4×

(4) The gains are consistent across different dropout rates

- 1. Privacy Issue: caused by client dropout
- 2. Performance Issue: expensive nature of secure aggregation

Distributed DP can be made more practical, by enforcing target privacy in the presence of client dropout and optimizing execution efficiency.

EuroSys '24

- 1. Privacy Issue: caused by client dropout
- 2. **Performance** Issue: expensive use of secure aggregation
- 3. Security Issue: assume honest majority among participants

- 1. Privacy Issue: caused by client dropout
- 2. **Performance** Issue: expensive use of secure aggregation
- 3. Security Issue: assume honest majority among participants
 - Adversarial server can game participant selection

- 1. Privacy Issue: caused by client dropout
- 2. Performance Issue: expensive use of secure aggregation
- 3. Security Issue: assume honest majority among participants
 - Adversarial server can game participant selection
 - Secure aggregation breaks

Dishonest participant rate

- 1. Privacy Issue: caused by client dropout
- 2. Performance Issue: expensive use of secure aggregation
- 3. Security Issue: assume honest majority among participants
 - Adversarial server can game participant selection
 - Secure aggregation breaks; distributed DP degrades

- 1. Privacy Issue: caused by client dropout
- 2. Performance Issue: expensive use of secure aggregation
- 3. Security Issue: assume honest majority among participants
 - Adversarial server can game participant selection
 - Secure aggregation breaks; distributed DP degrades
 - The problem has been overlooked:

Goal: to know whether the server manipulates the selection

Goal: to know whether the server manipulates the selection

Goal: to know whether the server manipulates the selection

- Self-sampling
 - Each client i in the population
 - Join if $r_i \in [0,R) < pR$ for some $p \in (0,1)$

Goal: to know whether the server manipulates the selection

- Self-sampling
- Mutual verification
 - Each client *i* claiming to join
 - Proceed only if $r_i < pR$ for $\forall j \neq i$

Goal: to know whether the server manipulates the selection

- Self-sampling
- Mutual verification
 - Each client *i* claiming to join
 - Proceed only if $r_i < pR$ for $\forall j \neq i$

Goal: to know whether the server manipulates the selection

- Self-sampling
- Mutual verification
- Prevent forging: verifiable random functions (VRFs)

Goal: to know whether the server manipulates the selection

Secure random selection

- Self-sampling
- Mutual verification
- Prevent forging: verifiable random functions (VRFs)

- For each $j \neq i$, client *i* also verifies that VRF.ver $(pk_j, r, \beta_j, \pi_j) = 1$
- The test passes only if β_j , $\pi_j = VRF.eval(sk_j, r)$

Neither can be manipulated!

Goal: to know whether the server manipulates the selection Secure random selection

- Self-sampling
- Mutual verification
- Prevent forging: verifiable random functions (VRFs)

Goal: to know whether the server manipulates the selection Secure random selection

- Self-sampling
- Mutual verification
- Prevent forging: verifiable random functions (VRFs)

Goal: to know whether the server manipulates the selection Secure random selection

- Self-sampling
- Mutual verification
- Prevent forging: verifiable random functions (VRFs)

Goal: to know whether the server manipulates the selection Secure random selection

- Self-sampling
- Mutual verification
- Prevent forging: verifiable random functions (VRFs)

Secure informed selection

- Prevent gaming: verifiable randomness has to be introduced to the last mile

Goal: to know whether the server manipulates the selection Secure random selection

- Self-sampling
- Mutual verification
- Prevent forging: verifiable random functions (VRFs)

- Prevent gaming: verifiable randomness has to be introduced to the last mile
- Achieve the expected effect of selection: the server refine the population in advance

Effectiveness

Random selection

1 Provably **aligns** the fractions of compromised participants **to** the base rate of dishonest clients in the population
Effectiveness

Random selection

1 Provably **aligns** the fractions of compromised participants **to** the base rate of dishonest clients in the population

Assumption:

- Population size n = 200k
- 0.1% dishonest clients in the population

Effectiveness

Random selection

1 Provably **aligns** the fractions of compromised participants **to** the base rate of dishonest clients in the population

2 with acceptable runtime cost ($\leq 10\,\%$) and negligible network overhead ($\leq 1\,\%$)

FL Application		FEMNIST@CNN				OpenImage@MobileNet				Reddit@Albert			
Population	Protocol	Time		Network		Time		Network		Time		Network	
		Server	Client	Server	Client	Server	Client	Server	Client	Server	Client	Server	Client
100	Rand	1.76min	0.97min	64.88MB	3.9MB	3.06min	2.28min	64.35MB	3.87MB	13.0min	6.67min	958.55MB	57.46MB
	Cli-Ctr	1.86min	1.26min	64.94MB	3.9MB	3.07min	2.44min	64.4MB	3.87MB	12.86min	8.8min	958.6MB	57.46MB
	Srv-Ctr	1.77min	0.97min	64.89MB	3.9MB	2.97min	2.17min	64.36MB	3.87MB	12.88min	6.58min	958.86MB	57.46MB
400	Rand	2.56min	1.4min	0.26GB	3.56MB	4.35min	3.36min	0.25GB	3.53MB	26.94min	15.65min	3.75GB	51.53MB
	Cli-Ctr	2.59min	1.83min	0.26GB	3.56MB	4.68min	3.89min	0.25GB	3.53MB	27.53min	21.95min	3.75GB	51.53MB
	Srv-Ctr	2.29min	1.3min	0.26GB	3.56MB	4.51min	3.49min	0.25GB	3.53MB	27.17min	15.76min	3.75GB	51.53MB
700	Rand	3.46min	2.01min	0.45GB	3.69MB	5.65min	4.1min	0.45GB	3.66MB	40.06min	24.77min	6.56GB	52.57MB
	Cli-Ctr	3.82min	2.82min	0.45GB	3.69MB	6.23min	5.06min	0.45GB	3.66MB	39.59min	33.91min	6.56GB	52.57MB
	Srv-Ctr	3.56min	2.02min	0.45GB	3.7MB	5.62min	4.06min	0.45GB	3.66MB	38.85min	23.84min	6.56GB	52.57MB

Effectiveness

Random selection

- 1 Provably **aligns** the fractions of compromised participants **to** the base rate of dishonest clients in the population
- (2) with acceptable runtime cost ($\leq 10~\%$) and negligible network overhead ($\leq 1~\%$)

Informed selection

① Security, overhead: similar

(2) Effectiveness of approximation: achieve comparable time-to-acc?

Effectiveness

Random selection

- 1 Provably **aligns** the fractions of compromised participants **to** the base rate of dishonest clients in the population
- (2) with acceptable runtime cost ($\leq 10~\%$) and negligible network overhead ($\leq 1~\%$)

Informed selection

Three practical issues in distributed DP

- 1. Privacy Issue: caused by client dropout
- 2. Performance Issue: expensive use of secure aggregation
- 3. Security Issue: assume honest majority among participants

Distributed DP can be made more secure, by preventing the adversary from manipulating the participant selection process with verifiable randomness. Security '24

My Work: build private and efficient cross-device FL

Future Work (3)

Future Work (1/3)

1. Mitigating Stragglers atop Distributed DP

- Existing async FL is incompatible with distributed DP
- Straggler problems remain when distributed DP is employed
- Existing explorations fall short in applicability/model utility

Future Work (2/3)

- 1. Privacy Enhancement of Asynchronous Training
- 2. Extension of Federated Unlearning to the Participant Side
 - Clients have the right to eliminate the impact of their data on the trained model
 - Intermediate results (e.g. aggregated updates) are also sensitive and made public
 - Existing research has overlooked this issue

Future Work (3/3)

- 1. Privacy Enhancement of Asynchronous Training
- 2. Extension of Federated Unlearning to the Participant Side
- 3. Harmonizing Efficiency, Privacy and Robustness in Single-Server Scenarios
 - The trained model is open to data poisoning and model poisoning
 - Identifying malformed local updates contradicts with the spirits of privacy protection
 - Existing remedies rely on two-server settings, which falls short in practicality

List of Publications

- 1. A Lotto: Secure Participant Selection against Adversarial Servers in Federated Learning. [USENIX Security 2024]
 - <u>Zhifeng Jiang</u>, Peng Ye, Shiqi He, Wei Wang, Ruichuan Chen, Bo Li
- 2. A Dordis: Efficient Federated Learning with Dropout-Resilient Differential Privacy. [ACM EuroSys 2024]
 - Zhifeng Jiang, Wei Wang, Ruichuan Chen
- Section Provided Asynchronous Training. [ACM SoCC 2022]
 - Zhifeng Jiang, Wei Wang, Baochun Li, Bo Li
- Towards Efficient Synchronous Federated Training: A Survey on System Optimization Strategies. *[IEEE Trans. Big Data 2022]*
 - <u>Zhifeng Jiang</u>, Wei Wang, Bo Li, Qiang Yang

- Gillis: Serving Large Neural Networks in Serverless Functions with Automatic Model Partitioning. *[ICDCS 2021]*
 - Minchen Yu, <u>Zhifeng Jiang</u>, Hok Chun Ng, Wei Wang, Ruichuan Chen, Bo Li
- Feature Reconstruction Attacks and Countermeasures of DNN Training in Vertical Federated Learning. *[IEEE TDSC 2024, Pending Major Revision]*
 - Peng Ye, <u>Zhifeng Jiang</u>, Wei Wang, Bo Li, Baochun Li
- FLASHE: Additively Symmetric Homomorphic Encryption for Cross-Silo Federated Learning. *[arXiv 2021]*
 - Zhifeng Jiang, Wei Wang, Yang Liu

The publications covered by this thesis is marked with \swarrow