
Towards Private and Efficient
Cross-Device Federated Learning

Zhifeng Jiang

Ph.D. Thesis Proposal Defense

Advisor: Wei Wang

Chairperson: Shuai Wang

Committee: Bo Li, Yangqiu Song

Apr 8, 2024

2

Centralized learning

Client

Data

Request

Prediction

Server

Model

3

Centralized learning hurts privacy

Data breaches…

4

Data breaches…

Potential abuse…

Centralized learning hurts privacy

5

Local learning

6

Local learning suffers from low data quality

7

Federated Learning
(FL)

Utility

Privacy

Centralized learning

Local learning

8

Step 1: Participant Selection

Initial model

Participants

Client
population

9

Step 2: Local Training

Initial model

Local model update

10

Step 3: Model Aggregation

Aggregated
update

11

Cross-Device Applications

Google’s Keyboard
Mobile

12

Google’s Keyboard
Mobile

Apple’s speaker recognition

IoT

Volvo’s trajectory prediction Cisco’s 3D printing Leveno’s clogging detection

Brave’s news recommendation

Huawei’s ads recommendation

Firefox’s URL bar suggestion

Cross-Device Applications

13

Challenge: identify and address the fundamental
privacy and efficiency issues in cross-device FL

Data leakage…

14

Challenge: identify and address the fundamental
privacy and efficiency issues in cross-device FL

Data leakage…

e.g., data reconstruction1 (Security ’23)

[1] Gradient Obfuscation Gives a False Sense of Security in Federated Learning

15

Challenge: identify and address the fundamental
privacy and efficiency issues in cross-device FL

Time-to-accuracy…

Target
acc

TimeData leakage…

16

My Work: build private and efficient cross-device FL

Efficient asynchronous training (SoCC ’22)

Time-to-accuracy…

Target
acc

Time

Weak privacy
attackers

Data leakage…

17

My Work: build private and efficient cross-device FL

Efficient asynchronous training (SoCC ’22)

Dropout-resilient & pipeline-accelerated distributed differential privacy (EuroSys ’24)

Secure participant selection (Security ’24)

Time-to-accuracy…

Target
acc

Time

Weak privacy
attackers

Strong privacy
attackers

Data leakage…

18

My Work: build private and efficient cross-device FL

Efficient asynchronous training (SoCC ’22)

Dropout-resilient & pipeline-accelerated distributed differential privacy (EuroSys ’24)

Secure participant selection (Security ’24)

Time-to-accuracy…

Target
acc

Time

Weak privacy
attackers

Strong privacy
attackers

Data leakage…

19

Stragglers are an efficiency bottleneck in sync FL

Time

A training round

Participants

Straggler

20

Target
acc

Time-to-acc

…

Idle waiting: 33.2% to 57.2%

Stragglers are an efficiency bottleneck in sync FL

21

…

Participant selection as a fix?

avg. round time ↓

Prioritize clients with high speed

22

Participant selection as a fix?

time-to-accuracy = [avg. round time] [# rounds]×

rounds

avg. round time

Prioritize clients with high speed and data quality

…

23

Participant selection as a fix?

Prioritize clients with high speed and data quality

State-of-the-art: Oort1 (OSDI ’21)

- Clients with higher score are selected more

- Definition of score for client :

Ui i

Ui = (T
ti)

1(T<ti)×α

speed

×|Bi|
1

|Bi| ∑
k∈Bi

Loss(k)2

data quality Data quality

Speed

High

Low

Priority

[1] Oort: Efficient federated learning via guided participant selection

24

Participant selection as a fix?

Prioritize clients with high speed and data quality

State-of-the-art: Oort (OSDI ’21)

Inefficient in achieving the best tradeoff in practice where speed ∝
1

data quality

Data quality

Speed

25

Participant selection as a fix?

Prioritize clients with high speed and data quality

State-of-the-art: Oort (OSDI ’21)

Inefficient in achieving the best tradeoff in practice where speed ∝
1

data quality

Data quality

Speed

an FL testbed

2.7 slower
than random

selection!

×

26

Prioritize clients with high speed and data quality

State-of-the-art: Oort (OSDI ’21)

Inefficient in achieving the best tradeoff in practice where

Fundamental challenge in sync FL: unpleasant coupling demands for speed and data quality

speed ∝
1

data quality

Participant selection as a fix?

Data quality

Speed

an FL testbed

2.7 slower
than random

selection!

×

27

To sidestep this challenge

Can we decouple them?

Data quality

Speed

High

Low

Priority

① Mostly emphasize

② While
making up for

28

To sidestep this challenge

Can we decouple them?

Data quality

Speed

High

Low

Priority

① Mostly emphasize

② While
making up for

Sure! If the training is asynchronous

29

To sidestep this challenge

Participants Time

global model version: 0 1→
0

0

0

0

Asynchronous Training

- Select some clients with best data and send them the latest model

- Early aggregate local updates without waiting for some running participants

30

To sidestep this challenge

Asynchronous Training

- Select some clients with best data and send them the latest model

- Early aggregate local updates without waiting for some running participants

Time

Participants

global model version: 1
0

0

0

0

1

1

31

To sidestep this challenge

Asynchronous Training

- Select some clients with best data and send them the latest model

- Early aggregate local updates without waiting for some running participants

More frequent update

Participants

0

0

0

0

1

1

2

2 3

3

3

4

4

5

5 6

6

7

7

…

32

To sidestep this challenge

How to really benefit efficiency with async FL?

 Shorter time-to-accuracy

More frequent update Each update makes

good progress

Done by
Async FL

#TODO

33

To sidestep this challenge

How to really benefit efficiency with async FL?

 Shorter time-to-accuracy

More frequent update Each update makes

good progress

The involved clients’

contribution do not cancel out

The involved clients

have good data #TODO

Done by
Async FL

34

To sidestep this challenge

How to really benefit efficiency with async FL?

 Shorter time-to-accuracy

More frequent update Each update makes

good progress

The involved clients’

contribution do not cancel out

The involved clients

have good data

Done by
Async FL

0

0

0

0

1

1

2

2 3

3

3

4

4

5

5 6

6

7

7

…

#TODO

35

To sidestep this challenge

How to really benefit efficiency with async FL?

 Shorter time-to-accuracy

More frequent update Each update makes

good progress

The involved clients’

contribution do not cancel out

The involved clients

have good data

#TODO

Done by
Async FL

0

0

0

0

1

1

2

2 3

3

3

4

4

5

5 6

6

7

7

…

Staleness: how “old” w.r.t. the latest Their used models are not too old

36

 Shorter time-to-accuracyTheir used models are not too old
 strawman+
async FL

①Hard limit on staleness

Pisces: guided async FL with controlled staleness

37

0

0

0

0

1

1

2

2 3

3

3

4

4

5

5 6

6

7

7

…

 Shorter time-to-accuracy
 strawman+
async FL

0

0

0

0

1

1

2

2 3

3

3

4

4

5

5

6

6

6

…Pisces

Original

Aggregate later

①Hard limit on staleness via pace control at model aggregation

Pisces: guided async FL with controlled staleness

Their used models are not too old

staleness: 0staleness: 3

if the upper bound is 2

staleness: 0staleness: 2

staleness: 1

38

①Hard limit on staleness via pace control at model aggregation

‣ Achieved by a neat yet provably effective algorithm

 Shorter time-to-accuracy
 strawman+
async FL

Aggregate?

Speed of

each participant

Time since last
aggregation

Pisces: guided async FL with controlled staleness

Their used models are not too old

39

①Hard limit on staleness via pace control at model aggregation

‣ Achieved by a neat yet provably effective algorithm

 Shorter time-to-accuracy
 strawman+
async FL

Aggregate?

Speed of

each participant

Time since last
aggregation

Guarantees
convergence

Pisces: guided async FL with controlled staleness

Their used models are not too old

40

①Hard limit on staleness via pace control at model aggregation

‣ Achieved by a neat yet provably effective algorithm

② Soft limit on staleness via informed participant selection

‣ Clients with higher score are selected more

‣ Definition of score for client :

Ui i

Ui =
1

(τ̃i + 1)β

Potential of low staleness

× |Bi|
1

|Bi| ∑
k∈Bi

Loss(k)2

Data quality

 Shorter time-to-accuracy
 strawman+
async FL

Pisces: guided async FL with controlled staleness

Their used models are not too old

41

End-to-end efficiency

① Time-to-accuracy

MNIST FEMNIST CIFAR-10 StackOverflow

Pisces: guided async FL with controlled staleness

42

End-to-end efficiency

① Time-to-accuracy:

up to 2 speedup×

2.0× 1.8× 1.6×

1.9×

MNIST FEMNIST CIFAR-10 StackOverflow

Major competitors

[1] Oort: Efficient federated learning via guided participant selection

Oort (OSDI ’21)

- SOTA sync FL

- Coupling speed and data quality

…

Pisces: guided async FL with controlled staleness

43

End-to-end efficiency

Major competitors Oort (OSDI ’21)

- SOTA sync FL

- Coupling speed and data quality

FedBuf1 (AISTATS ’22)

- SOTA async FL

- No bounded staleness

- No preference on data quality

… …

① Time-to-accuracy:

up to 2 speedup×

MNIST FEMNIST CIFAR-10 StackOverflow

1.2× 1.6× 1.1×

1.9×

[1] Federated learning with buffered asynchronous aggregation

Pisces: guided async FL with controlled staleness

44

End-to-end efficiency

Major competitors

…

① Time-to-accuracy:

up to 2 speedup×

② Traffic-to-accuracy:

No extra or even less

0

50

100

150

200

CIFAR10 StackOverflow

193

115 119
97

78
109

Tr
affi

c
to

 A
cc

.
(G

B)

0.00

0.13

0.25

0.38

0.50

MNIST FEMNIST

0.47

0.20

0.41

0.20

0.35

0.16Pisces Oort FedBuf

MNIST FEMNIST CIFAR-10 StackOverflow

FedBuf1 (AISTATS ’22)

- SOTA async FL

- No bounded staleness

- No preference on data quality

Oort (OSDI ’21)

- SOTA sync FL

- Coupling speed and data quality

…

Pisces: guided async FL with controlled staleness

45

To boost efficiency in the presence of stragglers,

the demands for clients' speed and data quality can be

decoupled, with staleness carefully eliminated. SoCC ‘22

Pisces: guided async FL with eliminated staleness

46

My Work: build private and efficient cross-device FL

Efficient asynchronous training (SoCC ’22)

Secure participant selection (Security ’24)

Time-to-accuracy…

Target
acc

Time

Weak privacy
attackers

Strong privacy
attackers

Dropout-resilient & pipeline-accelerated distributed differential privacy (EuroSys ’24)

Data leakage…

47

e.g., data reconstruction1 (Security ’23)

[1] Gradient Obfuscation Gives a False Sense of Security in Federated Learning

Data leakage…

The need for distributed differential privacy

48

Secure aggregation12

(CCS ’17, ‘20)

[1] Practical secure aggregation for privacy-preserving machine learning

[2] Secure Single-Server Aggregation with (Poly) Logarithmic Overhead

To conceal local updates?

The need for distributed differential privacy

49

① Local update

② Masked
local update

④ Aggregated update

Secure aggregation

③ Masks cancel out!

The need for distributed differential privacy

To conceal local updates?

50

The need for distributed differential privacy

Differential Privacy1

[1] Calibrating Noise to Sensitivity in Privacy Data Analysis

To also perturb the aggregated update?

51

The need for distributed differential privacy

 DP ensures that

be insensitive to the impact of

any single local update in

local
updates

= A()
noisy aggregated update

random noise

= f() +

For enhanced privacySacrifice the precision

Differential Privacy1

[1] Calibrating Noise to Sensitivity in Privacy Data Analysis

aggregation

To also perturb the aggregated update?

52

① Slightly noisy
local update

② Masked
slightly noisy
local update

④ Adequately noisy
aggregated update

Secure aggregation

③ Masks cancel out!

The need for distributed differential privacy

⓪ Global privacy budget Calculate the minimum required noise for each roundϵ →

To also perturb the aggregated update?

53

1. Privacy Issue: caused by client dropout

- Client dropout can occur anytime

Secure aggregation

Three practical issues in distributed DP

54

1. Privacy Issue: caused by client dropout

- Client dropout can occur anytime

Client behaviors simulated with 100 volatile
users from the FLASH dataset1 (WWW ‘21)

[1] Characterizing impacts of heterogeneity in federated learning upon large-scale smartphone data

Secure aggregation

Three practical issues in distributed DP

55

1. Privacy Issue: caused by client dropout

- Client dropout can occur anytime

- Insufficient noise for target privacy

Three practical issues in distributed DP

56

1. Privacy Issue: caused by client dropout

- Client dropout can occur anytime

- Insufficient noise for target privacy

CIFAR-10
Testbed

CIFAR-100
Testbed

Three practical issues in distributed DP

Privacy budget = 6 Privacy budget = 6

57

1. Privacy Issue: caused by client dropout

- Client dropout can occur anytime

- Insufficient noise for target privacy

- Naive solutions and their limitations

- Early: early stop when budget runs out—hurts utility

Privacy budget = 6

CIFAR-10
Testbed

CIFAR-100
Testbed

Three practical issues in distributed DP

58

1. Privacy Issue: caused by client dropout

- Client dropout can occur anytime

- Insufficient noise for target privacy

- Naive solutions and their limitations

- Early: early stop when budget runs out—hurts utility

- Con: proactively add more noise—requires expertise

Privacy budget = 6

CIFAR-10 CIFAR-100

Three practical issues in distributed DP

Too optimistic: privacy compromised

59

1. Privacy Issue: caused by client dropout

- Client dropout can occur anytime

- Insufficient noise for target privacy

- Naive solutions and their limitations

- Early: early stop when budget runs out—hurts utility

- Con: proactively add more noise—requires expertise

Privacy budget = 6

CIFAR-10 CIFAR-100

Three practical issues in distributed DP

Too pessimistic: utility may or may not suffer

60

Goal: achieve the best privacy-utility tradeoff without domain knowledge

Dropout-resilient noise enforcement

61

Goal: achieve the best privacy-utility tradeoff without domain knowledge

Intuition: add-then-remove

- Each client first adds excessive noise as separate components

Excessive Level

Necessary Level

Noise

Negation
of Noise

Noise
Addition

Noise
Removal

Result

<latexit sha1_base64="eLPntqCF0tl9Mf+DHCjvHOxCm7c=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeClx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1FjpoT8blCtu1V2ArBMvJxXI0RyUv/rDmKURSsME1brnuYnxM6oMZwJnpX6qMaFsQkfYs1TSCLWfLS6dkQurDEkYK1vSkIX6eyKjkdbTKLCdETVjverNxf+8XmrCWz/jMkkNSrZcFKaCmJjM3yZDrpAZMbWEMsXtrYSNqaLM2HBKNgRv9eV10r6qetfV2n2tUm/kcRThDM7hEjy4gTo0oAktYBDCM7zCmzNxXpx352PZWnDymVP4A+fzB6NIjXY=</latexit>

}

C
ou

pl
ed

Excessive Level

Necessary Level

Dropout-resilient noise enforcement

62

Goal: achieve the best privacy-utility tradeoff without domain knowledge

Intuition: add-then-remove

- Each client first adds excessive noise as separate components

- After aggregation, unnecessary ones are removed by the server

Excessive Level

Necessary Level

Noise

Negation
of Noise

Noise
Addition

Noise
Removal

Result

<latexit sha1_base64="eLPntqCF0tl9Mf+DHCjvHOxCm7c=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeClx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1FjpoT8blCtu1V2ArBMvJxXI0RyUv/rDmKURSsME1brnuYnxM6oMZwJnpX6qMaFsQkfYs1TSCLWfLS6dkQurDEkYK1vSkIX6eyKjkdbTKLCdETVjverNxf+8XmrCWz/jMkkNSrZcFKaCmJjM3yZDrpAZMbWEMsXtrYSNqaLM2HBKNgRv9eV10r6qetfV2n2tUm/kcRThDM7hEjy4gTo0oAktYBDCM7zCmzNxXpx352PZWnDymVP4A+fzB6NIjXY=</latexit>

}

C
ou

pl
ed

Excessive Level

Necessary Level

Dropout-resilient noise enforcement

63

Goal: achieve the best privacy-utility tradeoff without domain knowledge

Intuition: add-then-remove

- Each client first adds excessive noise as separate components

- After aggregation, unnecessary ones are removed by the server

Concrete example

Sampled clients |S| = 4

Minimum necessary noise level σ2
* = 1

Dropout-resilient noise enforcement

64

Goal: achieve the best privacy-utility tradeoff without domain knowledge

Intuition: add-then-remove

- Each client first adds excessive noise as separate components

- After aggregation, unnecessary ones are removed by the server

Concrete example

 to tolerate up to 2 clients to drop

n1,2 ∼ χ(1/6)

n2,2 ∼ χ(1/6)

n3,2 ∼ χ(1/6)

n4,2 ∼ χ(1/6)

Each client adds noise

n1,0 ∼ χ(1/4)

n2,0 ∼ χ(1/4)

n3,0 ∼ χ(1/4)

n4,0 ∼ χ(1/4)

n1,1 ∼ χ(1/12)

n2,1 ∼ χ(1/12)

n3,1 ∼ χ(1/12)

n4,1 ∼ χ(1/12)

ni ∼ χ(1/2)Clients

Sampled clients |S| = 4

Dropout tolerance t = 2,

Minimum necessary noise level σ2
* = 1

Add

Dropout-resilient noise enforcement

65

Goal: achieve the best privacy-utility tradeoff without domain knowledge

Intuition: add-then-remove

- Each client first adds excessive noise as separate components

- After aggregation, unnecessary ones are removed by the server

Concrete example

 to tolerate up to 2 clients to drop

n1,2 ∼ χ(1/6)

n2,2 ∼ χ(1/6)

n3,2 ∼ χ(1/6)

n4,2 ∼ χ(1/6)

Each client adds noise

n1,0 ∼ χ(1/4)

n2,0 ∼ χ(1/4)

n3,0 ∼ χ(1/4)

n4,0 ∼ χ(1/4)

n1,1 ∼ χ(1/12)

n2,1 ∼ χ(1/12)

n3,1 ∼ χ(1/12)

n4,1 ∼ χ(1/12)

ni ∼ χ(1/2)Clients

Sampled clients |S| = 4

Dropout tolerance t = 2,

Minimum necessary noise level σ2
* = 1

Add

Dropout-resilient noise enforcement

66

Goal: achieve the best privacy-utility tradeoff without domain knowledge

Intuition: add-then-remove

- Each client first adds excessive noise as separate components

- After aggregation, unnecessary ones are removed by the server

Concrete example

 to tolerate up to 2 clients to drop

n1,2 ∼ χ(1/6)

n2,2 ∼ χ(1/6)

n3,2 ∼ χ(1/6)

n4,2 ∼ χ(1/6)

Each client adds noise

n1,0 ∼ χ(1/4)

n2,0 ∼ χ(1/4)

n3,0 ∼ χ(1/4)

n4,0 ∼ χ(1/4)

n1,1 ∼ χ(1/12)

n2,1 ∼ χ(1/12)

n3,1 ∼ χ(1/12)

n4,1 ∼ χ(1/12)

ni ∼ χ(1/2)Clients

Sampled clients |S| = 4

Dropout tolerance t = 2,

Minimum necessary noise level σ2
* = 1

Add

Then remove

Achieve target noise σ2
∗
= 1σ

2
∗
= 1

n2,0

n1,0

n3,0

n4,0

n1,1

n2,1

n3,1

n4,1

n1,2

n2,2

n3,2

n4,2

To rem
ove

If 0 client drops

Dropout-resilient noise enforcement

67

Goal: achieve the best privacy-utility tradeoff without domain knowledge

Intuition: add-then-remove

- Each client first adds excessive noise as separate components

- After aggregation, unnecessary ones are removed by the server

Concrete example

Then remove

Achieve target noise σ2
∗
= 1σ

2
∗
= 1

n2,0

n1,0

n3,0

n4,0

n1,1

n2,1

n3,1

n4,1

n1,2

n2,2

n3,2

n4,2

To rem
ove

If 0 client drops

n1,0 n1,1 n1,2

n2,0 n2,1 n2,2

n3,0 n3,1 n3,2

n4,0 n4,1 n4,2

To rem
ove

Achieve target noise σ2
∗
= 1σ

2
∗
= 1

If 1 client drops

Dropout-resilient noise enforcement

 to tolerate up to 2 clients to drop

n1,2 ∼ χ(1/6)

n2,2 ∼ χ(1/6)

n3,2 ∼ χ(1/6)

n4,2 ∼ χ(1/6)

Each client adds noise

n1,0 ∼ χ(1/4)

n2,0 ∼ χ(1/4)

n3,0 ∼ χ(1/4)

n4,0 ∼ χ(1/4)

n1,1 ∼ χ(1/12)

n2,1 ∼ χ(1/12)

n3,1 ∼ χ(1/12)

n4,1 ∼ χ(1/12)

ni ∼ χ(1/2)Clients

Sampled clients |S| = 4

Dropout tolerance t = 2,

Minimum necessary noise level σ2
* = 1

Add

68

Goal: achieve the best privacy-utility tradeoff without domain knowledge

Intuition: add-then-remove

- Each client first adds excessive noise as separate components

- After aggregation, unnecessary ones are removed by the server

Concrete example

Then remove

Achieve target noise σ2
∗
= 1σ

2
∗
= 1

n2,0

n1,0

n3,0

n4,0

n1,1

n2,1

n3,1

n4,1

n1,2

n2,2

n3,2

n4,2

To rem
ove

If 0 client drops

n1,0 n1,1 n1,2

n2,0 n2,1 n2,2

n3,0 n3,1 n3,2

n4,0 n4,1 n4,2

To rem
ove

Achieve target noise σ2
∗
= 1σ

2
∗
= 1

If 1 client drops If 2 client drops

Dropout-resilient noise enforcement

 to tolerate up to 2 clients to drop

n1,2 ∼ χ(1/6)

n2,2 ∼ χ(1/6)

n3,2 ∼ χ(1/6)

n4,2 ∼ χ(1/6)

Each client adds noise

n1,0 ∼ χ(1/4)

n2,0 ∼ χ(1/4)

n3,0 ∼ χ(1/4)

n4,0 ∼ χ(1/4)

n1,1 ∼ χ(1/12)

n2,1 ∼ χ(1/12)

n3,1 ∼ χ(1/12)

n4,1 ∼ χ(1/12)

ni ∼ χ(1/2)Clients

Sampled clients |S| = 4

Dropout tolerance t = 2,

Minimum necessary noise level σ2
* = 1

Add

69

Goal: achieve the best privacy-utility tradeoff without domain knowledge

Intuition: add-then-remove

Concrete example

Formal definition: XNoise

- Noise addition: decompose Client ’s added noise into

components: , , and

- Noise removal: when there are clients dropping out, the noise components
contributed by the surviving clients with the index becomes excessive
and is removed by the server

i ni ∼ χ(σ2
*

|S| − t) t + 1

ni =
t

∑
k=0

ni,k ni,0 ∼ χ(σ2
*

|S|) ni,k ∼ χ(σ2
*

(|S| − k + 1)(|S| − k)) (k ∈ [t])

|D | ni,k

i ∈ S∖D k > |D |

Dropout-resilient noise enforcement

70

Goal: achieve the best privacy-utility tradeoff without domain knowledge

Intuition: add-then-remove

Concrete example

Formal definition: XNoise

Preventing adversarial server from understating dropout

- Mislead survivals to remove more noise than needed

Dropout-resilient noise enforcement

Secure aggregation

71

Goal: achieve the best privacy-utility tradeoff without domain knowledge

Intuition: add-then-remove

Concrete example

Formal definition: XNoise

Preventing adversarial server from understating dropout

- Mislead survivals to remove more noise than needed

- Enable verification via a secure signature scheme

Dropout-resilient noise enforcement

Secure aggregation

72

Effectiveness

Dropout-resilient noise enforcement

73

Improves privacy

Privacy budget = 6
Effectiveness

Dropout-resilient noise enforcement

74

Improves privacy

without sacrificing
final model utility

Dropout rates

Datasets

Privacy budget = 6
Effectiveness

Dropout-resilient noise enforcement

75

Dropout-resilient noise enforcement

without sacrificing
final model utility

Dropout rates

Datasets

and incurs
acceptable
()
runtime cost
≤ 34 %

Effectiveness

Example: no dropout

FEMNIST@CNN FEMNIST@ResNet18 CIFAR10@ResNet18 CIFAR10@VGG19

Improves privacy

Privacy budget = 6

76

1. Privacy Issue: caused by client dropout

2. Performance Issue: expensive use of secure aggregation

Three practical issues in distributed DP

77

1. Privacy Issue: caused by client dropout

2. Performance Issue: expensive use of secure aggregation

- Extensive use of secret sharing and pairwise masking

Three practical issues in distributed DP

78

1. Privacy Issue: caused by client dropout

2. Performance Issue: expensive use of secure aggregation

- Extensive use of secret sharing and pairwise masking

- Dominates the training time (at least 91%)

Three practical issues in distributed DP

original secure aggregation: SecAgg

79

1. Privacy Issue: caused by client dropout

2. Performance Issue: expensive use of secure aggregation

- Extensive use of secret sharing and pairwise masking

- Dominates the training time (at least 91%)

- Follow-up solutions

- e.g. SecAgg+: improves asymptotically

Three practical issues in distributed DP

original secure aggregation: SecAgg

80

1. Privacy Issue: caused by client dropout

2. Performance Issue: expensive use of secure aggregation

- Extensive use of secret sharing and pairwise masking

- Dominates the training time (at least 91%)

- Follow-up solutions have inefficiencies

- e.g. SecAgg+: improves asymptotically, but not so helpful in small-scale practice1

SOTA secure aggregation: SecAgg+

[1] Towards federated learning at scale: system design, MLSys ‘19

Three practical issues in distributed DP

original secure aggregation: SecAgg

81

Goal: leverage the underutilized resources in the system level

Pipeline-parallel acceleration

82

Goal: leverage the underutilized resources in the system level

Approach:

- Step 1: Identify the types of system resources

Secure aggregation

s-comp: the compute resources
(e.g., CPU, GPU, and memory) of
the server

c-comp: the compute resources of
clients

comm: the network resource used
for server-client communication

Pipeline-parallel acceleration

83

Goal: leverage the underutilized resources in the system level

Approach:

- Step 1: Identify the types of system resources

- Step 2: Group consecutive operations that use the same system resources

Secure aggregation

Pipeline-parallel acceleration

84

Goal: leverage the underutilized resources in the system level

Approach:

- Step 1: Identify the types of system resources

- Step 2: Group consecutive operations that use the same system resources

- Step 3: Evenly partition each client’s update into chunks and pipeline their processing

Time

Chunk 1

Chunk 2

Chunk 3

1 (c-comp)Stage 2 (comm) 3 (s-comp) 4 (comm) 5 (c-comp)

Pipeline-parallel acceleration

85

Goal: leverage the underutilized resources in the system level

Approach:

- Step 1: Identify the types of system resources

- Step 2: Group consecutive operations that use the same system resources

- Step 3: Evenly partition each client’s update into chunks and pipeline their processing

- Solve an optimization problem to determine the optimal number of chunk, m*

m* = arg min
m∈N+

fa,m

fs,c = bs,c + ls Definition of the finish time of
Chunk at Stage m a

s . t .

Intra-chunk sequential
executionos,c = {0, if s = 0,

fs−1,c

bs,c = max{os,c, rs,c}

rs,c =
0, if s = 0 and c = 0,
fq,m or ⊥ , if s ≠ 0 and c = 0,
fs,c−1, otherwise

Exclusive allocation
& Inter-chunk sequential execution

Pipeline-parallel acceleration

86

Effectiveness:
① A maximum speedup of 2.4×

Case study: CIFAR10 @
VGG19, dropout rate = 30%

w/ or w/o

pipelining

Pipeline-parallel acceleration

87

Effectiveness:

w/o or w/

our noise enforcement

Pipeline-parallel acceleration

① A maximum speedup of 2.4×

Case study: CIFAR10 @
VGG19, dropout rate = 30%

88

Effectiveness:

Implemented using
SecAgg or SecAgg+

Pipeline-parallel acceleration

① A maximum speedup of 2.4×

Case study: CIFAR10 @
VGG19, dropout rate = 30%

89

Effectiveness:

②
Larger
models

gain
more

1M

11M

11M

20M

Pipeline-parallel acceleration

③ It scales
with

number of
participants

16

100

④ The gains are consistent across different dropout rates

① A maximum speedup of 2.4×

90

1. Privacy Issue: caused by client dropout

2. Performance Issue: expensive nature of secure aggregation

Distributed DP can be made more practical,

by enforcing target privacy in the presence of client dropout

and optimizing execution efficiency. EuroSys ‘24

Three practical issues in distributed DP

91

1. Privacy Issue: caused by client dropout

2. Performance Issue: expensive use of secure aggregation

3. Security Issue: assume honest majority among participants

Three practical issues in distributed DP

Secure
aggregation

Assum
ption

92

1. Privacy Issue: caused by client dropout

2. Performance Issue: expensive use of secure aggregation

3. Security Issue: assume honest majority among participants

- Adversarial server can game participant selection

Secure
aggregation

Assum
ption

Reality
vs

Three practical issues in distributed DP

93

1. Privacy Issue: caused by client dropout

2. Performance Issue: expensive use of secure aggregation

3. Security Issue: assume honest majority among participants

- Adversarial server can game participant selection

- Secure aggregation breaks

Dishonest participant rate

0

1

At
ta

ck
er

 s
uc

ce
ss

 ra
te

some threshold

Three practical issues in distributed DP

94

1. Privacy Issue: caused by client dropout

2. Performance Issue: expensive use of secure aggregation

3. Security Issue: assume honest majority among participants

- Adversarial server can game participant selection

- Secure aggregation breaks; distributed DP degrades

Three practical issues in distributed DP

Dishonest participant rate

0

1

At
ta

ck
er

 s
uc

ce
ss

 ra
te

some threshold

95

1. Privacy Issue: caused by client dropout

2. Performance Issue: expensive use of secure aggregation

3. Security Issue: assume honest majority among participants

- Adversarial server can game participant selection

- Secure aggregation breaks; distributed DP degrades

- The problem has been overlooked:

Three practical issues in distributed DP

Even for a reputable company

External Hacker

Disgruntled Employee

“Mostly Honest”

96

Goal: to know whether the server manipulates the selection

Self-sampling with verifiable randomness

97

Self-sampling with verifiable randomness

Goal: to know whether the server manipulates the selection

Secure random selection

98

Self-sampling with verifiable randomness

Goal: to know whether the server manipulates the selection

Secure random selection

- Self-sampling

- Each client in the population

- Join if for some
i

ri ∈ [0,R) < pR p ∈ (0,1)

99

Self-sampling with verifiable randomness

Goal: to know whether the server manipulates the selection

Secure random selection

- Self-sampling

- Mutual verification

- Each client claiming to join

- Proceed only if for
i

rj < pR ∀j ≠ i

100

Self-sampling with verifiable randomness

Goal: to know whether the server manipulates the selection

Secure random selection

- Self-sampling

- Mutual verification

- Each client claiming to join

- Proceed only if for
i

rj < pR ∀j ≠ i

forge

101

Self-sampling with verifiable randomness

Goal: to know whether the server manipulates the selection

Secure random selection

- Self-sampling

- Mutual verification

- Prevent forging: verifiable random functions (VRFs)

102

Self-sampling with verifiable randomness

Goal: to know whether the server manipulates the selection

Secure random selection

- Self-sampling

- Mutual verification

- Prevent forging: verifiable random functions (VRFs)

- Assume each client has a key pair with integrity guaranteed by a PKI

- For each , client also verifies that

- The test passes only if

i (ski, pki)
j ≠ i i VRF.ver(pkj, r, βj, πj) = 1

βj, πj = VRF.eval(skj, r)

Round index, publicsecret key, bound to j

Neither can be manipulated!

103

Self-sampling with verifiable randomness

Goal: to know whether the server manipulates the selection

Secure random selection

- Self-sampling

- Mutual verification

- Prevent forging: verifiable random functions (VRFs)

Secure informed selection

104

Self-sampling with verifiable randomness

Goal: to know whether the server manipulates the selection

Secure random selection

- Self-sampling

- Mutual verification

- Prevent forging: verifiable random functions (VRFs)

Secure informed selection

Have a
favor!

Data quality

Speed

High

Low

Priority

Example:

Oort

105

Self-sampling with verifiable randomness

Goal: to know whether the server manipulates the selection

Secure random selection

- Self-sampling

- Mutual verification

- Prevent forging: verifiable random functions (VRFs)

Secure informed selection

Have a
favor!

Direct: refer to fake metrics

Indirect: optimize the referred metrics

Gaming

106

Self-sampling with verifiable randomness

Goal: to know whether the server manipulates the selection

Secure random selection

- Self-sampling

- Mutual verification

- Prevent forging: verifiable random functions (VRFs)

Secure informed selection

- Prevent gaming: verifiable randomness has to be introduced to the last mile

Have a
favor!≈

Secure random selection

107

Self-sampling with verifiable randomness

Goal: to know whether the server manipulates the selection

Secure random selection

- Self-sampling

- Mutual verification

- Prevent forging: verifiable random functions (VRFs)

Secure informed selection

- Prevent gaming: verifiable randomness has to be introduced to the last mile

- Achieve the expected effect of selection: the server refine the population in advance

≈+ Have a
favor!

Data quality

Speed To retain

To exclude

Secure random selectionPopulation refinement

108

Lotto: Self-sampling with verifiable randomness

Effectiveness

① Provably aligns the fractions of compromised participants to the base rate of dishonest
clients in the population

Random selection

109

Effectiveness

① Provably aligns the fractions of compromised participants to the base rate of dishonest
clients in the population

Random selection

Assumption:

• Population size n = 200k

• 0.1% dishonest clients in

the population

10% dishonest clients in
the participant

Lotto: Self-sampling with verifiable randomness

110

Effectiveness

①Provably aligns the fractions of compromised participants to the base rate of dishonest
clients in the population

② with acceptable runtime cost () and negligible network overhead ()≤ 10 % ≤ 1 %

Random selection

Lotto: Self-sampling with verifiable randomness

111

Effectiveness

Random selection

①Provably aligns the fractions of compromised participants to the base rate of dishonest
clients in the population

② with acceptable runtime cost () and negligible network overhead ()≤ 10 % ≤ 1 %

Lotto: Self-sampling with verifiable randomness

Informed selection

①Security, overhead: similar

② Effectiveness of approximation: achieve comparable time-to-acc?

112
FEMNIST@CNN OpenImage@MobileNet Reddit@Albert

Lotto: Self-sampling with verifiable randomness

Effectiveness

Random selection

Informed selection

①Provably aligns the fractions of compromised participants to the base rate of dishonest
clients in the population

② with acceptable runtime cost () and negligible network overhead ()≤ 10 % ≤ 1 %

①Security, overhead: similar

② Effectiveness of approximation: achieve comparable time-to-acc!

113

1. Privacy Issue: caused by client dropout

2. Performance Issue: expensive use of secure aggregation

3. Security Issue: assume honest majority among participants

Three practical issues in distributed DP

Distributed DP can be made more secure,

by preventing the adversary from

manipulating the participant selection
process with verifiable randomness. Security ‘24

114

My Work: build private and efficient cross-device FL

Efficient asynchronous training (SoCC ’22)

Dropout-resilient & pipeline-accelerated distributed differential privacy (EuroSys ’24)

Secure participant selection (Security ’24)

Time-to-accuracy…

Target
acc

Time

Efficiency-
Only

Privacy-
First

Data leakage…

115

Future Work (3)

116

Future Work (1/3)

1. Mitigating Stragglers atop Distributed DP

- Existing async FL is incompatible with distributed DP

- Straggler problems remain when distributed DP is employed

- Existing explorations fall short in applicability/model utility

117

Future Work (2/3)

1. Privacy Enhancement of Asynchronous Training

2. Extension of Federated Unlearning to the Participant Side

- Clients have the right to eliminate the impact of their data on the trained model

- Intermediate results (e.g. aggregated updates) are also sensitive and made public

- Existing research has overlooked this issue

118

Future Work (3/3)

1. Privacy Enhancement of Asynchronous Training

2. Extension of Federated Unlearning to the Participant Side

3. Harmonizing Efficiency, Privacy and Robustness in Single-Server Scenarios

- The trained model is open to data poisoning and model poisoning

- Identifying malformed local updates contradicts with the spirits of privacy protection

- Existing remedies rely on two-server settings, which falls short in practicality

119

List of Publications

1. ☆ Lotto: Secure Participant Selection
against Adversarial Servers in Federated
Learning. [USENIX Security 2024]

• Zhifeng Jiang, Peng Ye, Shiqi He, Wei Wang,

Ruichuan Chen, Bo Li

2. ☆ Dordis: Efficient Federated Learning with
Dropout-Resilient Differential Privacy. [ACM
EuroSys 2024]
• Zhifeng Jiang, Wei Wang, Ruichuan Chen

3. ☆ Pisces: Efficient Federated Learning via
Guided Asynchronous Training. [ACM SoCC
2022]
• Zhifeng Jiang, Wei Wang, Baochun Li, Bo Li

4. Towards Efficient Synchronous Federated
Training: A Survey on System Optimization
Strategies. [IEEE Trans. Big Data 2022]
• Zhifeng Jiang, Wei Wang, Bo Li, Qiang Yang

The publications covered by this thesis is marked with ☆

Thank You!

5. Gillis: Serving Large Neural Networks in
Serverless Functions with Automatic Model
Partitioning. [ICDCS 2021]

• Minchen Yu, Zhifeng Jiang, Hok Chun Ng,

Wei Wang, Ruichuan Chen, Bo Li

6. Feature Reconstruction Attacks and
Countermeasures of DNN Training in Vertical
Federated Learning. [IEEE TDSC 2024,
Pending Major Revision]

• Peng Ye, Zhifeng Jiang, Wei Wang, Bo Li,

Baochun Li

7. FLASHE: Additively Symmetric
Homomorphic Encryption for Cross-Silo
Federated Learning. [arXiv 2021]

• Zhifeng Jiang, Wei Wang, Yang Liu

