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Centralized learning hurts privacy

Forbes

Clearview AI, The Company
Whose Database Has Amassed 3
Billion Photos, Hacked

Data breaches...




Centralized learning hurts privacy

guardian

Facebook halts use of WhatsApp data
for advertising in Europe

Potential abuse...




Local learning




Local learning suffers from low data quality




Local learning
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Step 1: Participant Selection
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Step 2: Local Training

Local model update
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J Initial model
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Step 3: Model Aggregation
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Cross-Device Applications
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Cross-Device Applications

ey

Apple’s speaker recognition Huawei’s ads recommendation

Mobile

0 - [ ] New Tab X -+

G hacker news|

Q_ hacker news — Search with Google
@ Y| Machine Teaching: Building Machine Learni... —
Y| Ask HN: What is your favorite CS paper? | ... —
Brave the new Internet Y| Redefine statistical significance | Hacker N... —

Y Hacker News —

Y Hacker News —

ience with a browser built to protect your privacy.

Brave’s news recommendation Firefox’s URL bar suggestion

loT

Volvo’s trajectory prediction Cisco’s 3D printing Leveno’s clogging detection



Challenge: identify and address the fundamental
privacy and efficiency issues In cross-device FL

Data leakage...
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Challenge: identify and address the fundamental
privacy and efficiency issues In cross-device FL

client side server side
reconstructed data Xm,,-’s
[ ]
@@ @ update

‘ 3 Xl/n,i
> @ enc(+)
T T - @ C;)E')
. local optimization @ decode & postprocess 1 —(>

mpute A,(,]f ) X

% AW o A,(,]f)) upload ® I%lin ||A:r(1k) _ A 2 gradient input

e.g., data reconstruction! (Security '23)
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[1] Gradient Obfuscation Gives a False Sense of Security in Federated Learning



Challenge: identify and address the fundamental
privacy and efficiency issues In cross-device FL
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My Work: build private and efficient cross-device FL
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-------------------------------------------------------------------------------

5 Weak privacy Efficient asynchronous training (SoCC ’22)
attackers

________________________________________________________________________________
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My Work: build private and efficient cross-device FL

A
Target
- daCC
@
R Time-to-accuracy...
-~ Data leakage... '

» Time

Efficient asynchronous training (SoCC ’22)

Dropout-resilient & pipeline-accelerated distributed differential privacy (EuroSys ’24)

Secure participant selection (Security '24) 17



My Work: build private and efficient cross-device FL

Time-to-accuracy...

» Time

A
Target
_ acc
0
-~ Data leakage... “
Weak privacy
attackers

[Efficient asynchronous training (SoCC ’22)]

Dropout-resilient & pipeline-accelerated distributed differential privacy (EuroSys ’24)

Secure participant selection (Security '24)
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sjuedioiued

Stragglers are an efficiency bottleneck in sync FL

A training round

Straggler
— ]

> Time 19



Stragglers are an efficiency bottleneck in sync FL

Time-to-acc

»)
Idle waiting: 33.2% t0 57.2%
< >
I | - > g
«— I 1 5
— - — I
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Participant selection as a fix?

Prioritize clients with high speed ==

I:L\/,III

avg. round time |
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Participant selection as a fix?

Prioritize clients with high speed and data quality —

I:L\f,l:l

time-to-accuracy = [avg. round time] X [# rounds]

# rounds

avg. round time
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Participant selection as a fix?

State-of-the-art: Oort? (OSDI ’21)

- Clients with higher score are selected more

- Definition of score U, for client i:

T 1(T<t)xa 7
U= — X|B:| |—— Loss(k)?
l (t) B |B,-|Z (k)

! kEB;

speed data quality

[1] Oort: Efficient federated learning via guided participant selection
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Data quality
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High
A
3
=
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Participant selection as a fix?

1

Inefficient in achieving the best tradeoff in practice where speed .
data quality

paadg

Data quality
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Participant selection as a fix?

1
Inefficient in achieving the best tradeoff in practice where speed .
data quality
A ~~
§ 50 4 | 49.1
D = 2.7X slower
O .
2 ;5 than random
18.0 .
8 selection!
O
o E 0 -
\ BN FedAvg
? & @ > Oort (o= 2.0)

Data quality
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Participant selection as a fix?

Fundamental challenge in sync FL: unpleasant coupling demands for speed and data quality
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To sidestep this challenge

Can we decouple them?

paadg
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making up for
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To sidestep this challenge

Can we decouple them?

Sure! If the training is asynchronous
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To sidestep this challenge

Asynchronous Training

- Early aggregate local updates without waiting for some running participants

global model version: 0— 1

sjuedioiued

0 » Time
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To sidestep this challenge

Asynchronous Training
- Select some clients with best data and send them the latest model

global model version: 1

sjuedioiped

» Time

30



To sidestep this challenge

Asynchronous Training
- Select some clients with best data and send them the latest model

o [0 3 5 2 5 5
2

2 = > 3

2 0 3 5

o

l o

7 0 3 3 2 5

( More frequent update )
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To sidestep this challenge

How to really benefit efficiency with async FL?

(Y Shorter time-to-accuracy )

7

™~

Done by ( More frequent update )
Async FL

Each update makes
good progress

] #ron0
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To sidestep this challenge

How to really benefit efficiency with async FL?

™~

Each update makes
good progress

)

Done b
y ///

f

Async FL
The involved clients
have good data

The involved clients’
contribution do not cancel out

J

#TODO

33



To sidestep this challenge

How to really benefit efficiency with async FL?

(

The involved clients’
contribution do not cancel out

j #TODO
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To sidestep this challenge

How to really benefit efficiency with async FL?

Staleness: how “old” w.r.t. the latest

f

ﬁheir used models are not too O|% #TODO

5

6

7

7
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Pisces: guided async FL with controlled staleness

+ strawman

. (Y Shorter time-to-accuracy )

Their used models are not too old
async FL

(1) Hard limit on staleness

36



Pisces: guided async FL with controlled staleness

(D Hard limit on staleness via pace control at model aggregation

. staleness: 3 staleness: 0 y
0 1 2 N [4 5 6 7
0 2 3 7
Original
0 3 5 1
0 1 3 4 6 :
ﬂggregate later
. staleness: 2 'S staleness: 0 :
0 1 2 \ [ 5 6
0 2 3 6
Pisces
0 3 5
0 1 3 4 6

R__ staleness: 1

if the upper bound is 2 37



Pisces: guided async FL with controlled staleness

(D Hard limit on staleness via pace control at model aggregation
> Achieved by a neat yet provably effective algorithm

Speed of

1 Function ManagerToAggregate()
. % /* Set the aggregation interval proportionate to the
each participant

profiled latency of the slowest running client. */

2 Lmax = maxl €R Ll A re ater)
3 I =Lmax/b :: ggreg )
Time since last a

_ /* Aggregate if the interval currently ends. */
aggregation 1+ returnTj—t; >
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Pisces: guided async FL with controlled staleness

(D Hard limit on staleness via pace control at model aggregation

> Achieved by a neat yet provably effective algorithm

C

Guarantees
convergence

THEOREM 2. Let r)t(,q) be the local learning rate of client
SGD in the q-th step, and define a(Q) = 232_01 rhfq), B(Q) :=

ngol(r;gq))z. Choosing l]tgq)Q < 1 for all local steps q =

0,---,Q — 1, the global model iterates in Pisces achieves the
following ergodic convergence rate

= O -F) )
;;Ilvf(w)ll S T O +§@ff? @

+3L*QB(Q) (b2 + 1) (af + 0y + G).
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Pisces: guided async FL with controlled staleness

(2 Soft limit on staleness via informed participant selection
> Clients with higher score are selected more

> Definition of score Ui for client i:

1 1
— X |B:|, [— Loss(k)?
(7;+ D | Bil ,{EZB.

Potential of low staleness ,
Data quality
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Pisces: guided async FL with controlled staleness

End-to-end efficiency

(D Time-to-accuracy

Accuracy (%)

98 70 - 30 - T 4
96 - 60 60 £
& 27
94 50 - 40 - 5
‘ A
| | | | | | O | |
0 5 10 0 16 32 00 07 14 0 20 40
Time (min) Time (min) Time (hour) Time (min)
MNIST FEMNIST CIFAR-10 StackOverflow
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Pisces: guided async FL with controlled staleness

Oort (OSDI ’21)

- SOTA sync FL
- Coupling speed and data quality

Major competitors

End-to-end efficiency

2.0x 1.8x
. = - — -
@ Time-to-accuracy: & 8 70 o
>~ -
O _ | oL
up to 2X speedup £ 90 60
Q
<944 50 4 :
Pisces Oort - I I - I I
0 5 10 0 16 32
Time (min) Time (min)
MNIST FEMNIST

[1] Oort: Efficient federated learning via guided participant selection
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Pisces: guided async FL with controlled staleness

Major competitors

End-to-end efficiency

1.2x
. < - <+
D Time-to-accuracy: < %71 ..+
S 964 o
up to 2X speedup =
Q
<944 :
Pisces Oort , |
FedBuff 0 5 10
Time (min)
MNIST

[1] Federated learning with buffered asynchronous aggregation

FedBuff! (AISTATS '22)

- SOTA async FL

- No bounded staleness

- No preference on data quality

I: e m— s ] — | L
1 [ l: ] [ — 1 I
1.6x 11
70 - L 80 ”ﬂ;‘_ S 4 A
. s % ue‘:l g \‘__L
60H . 60 4 17 ) :
: A 821 i\ 1.9x
50 - 40 £ & "l Dr—
) ¥
I I I I 0 I I
0 16 32 0.0 0.7 1.4 0 20 40
Time (min) Time (hour) Time (min)
FEMNIST CIFAR-10 StackOverflow
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Pisces: guided async FL with controlled staleness

Major competitors

End-to-end efficiency

0.50 200
(2 Traffic-to-accuracy: § 038 150
No extra or even less e g 0.95
o=
=
©
=

| Pisces [ Oort [ FedBuff

193
100 115
- i . II _
0

MNIST FEMNIST CIFAR10 StackOverflow




Pisces: guided async FL with eliminated staleness

To boost efficiency in the presence of stragglers,
the demands for clients' speed and data quality can be
decoupled, with staleness carefully eliminated.
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My Work: build private and efficient cross-device FL

A
Target
acc

] yq%@f

Data leakage...

W: Time-to-accuracy...

» Time

-------------------------------------------------------------------------------

Weak privacy

Efficient asynchronous training (SoCC ’22)
attackers |

________________________________________________________________________________

-------------------------------------------------------------------------------------------------------------------

[ Dropout-resilient & pipeline-accelerated distributed differential privacy (EuroSys '24) j

Strong privacy
attackers

-------------------------------------------------------------------------------------------------------------------

[Secure participant selection (Security ’24)]




The need for distributed differential privacy

client side server side

private data X, ; reconstructed data X,,,‘,"s

W - q
{
-

S| =
e
Yy @ update X/
O @ enc(-) 7

T T » @ @ dec .)
. local optimization @ decode & postprocess

. compute A,(,lf) X;n:
NG (k)y upload . ~ radient nput
A’ =0(Ay") UP0% ) min AR A2 TR —

e.g., data reconstruction? (Security '23)

3 yq%@f

Data leakage...

47

[1] Gradient Obfuscation Gives a False Sense of Security in Federated Learning



The need for distributed differential privacy

To conceal local updates?

Secure aggregation?2
(CCS ’17, ‘20)

[1] Practical secure aggregation for privacy-preserving machine learning
[2] Secure Single-Server Aggregation with (Poly) Logarithmic Overhead

48



The need for distributed differential privacy

10U
7

Secure aggregation

To conceal local updates?

@ Masked
local update

ok @) Masks cancel out! -

?

D Local update
@ Aggregated update




The need for distributed differential privacy

To also perturb the aggregated update?

Differential Privacy’

[1] Calibrating Noise to Sensitivity in Privacy Data Analysis
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The need for distributed differential privacy

To also perturb the aggregated update?

Differential Privacy’

Sacrifice the precision For enhanced privacy

noisy aggregated update

By :A( @ ) DP ensures that AW

be insensitive to the impact of

=f( @ ) 4+ Ij‘\ any single local update in | @

aggregation local random noise
updates

[1] Calibrating Noise to Sensitivity in Privacy Data Analysis
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The need for distributed differential privacy

To also perturb the aggregated update?

57@

7 — — -
?

?

@ Slightly noisy

local update @ Adequately noisy

aggregated update

52
(O Global privacy budget € — Calculate the minimum required noise for each round



Three practical issues In distributed DP

1. Privacy Issue: caused by client dropout
- Client dropout can occur anytime

]
/

Secure aggregation

53



Three practical issues in distributed DP

1. Privacy Issue: caused by client dropout
- Client dropout can occur anytime

& 100 -

4 i

=

: -

o

M -

< 50 -

o i

oNn

3 i

(o -

O

%) -

Q_‘ O | | | I
0 1

Client Dropout Rate

Client behaviors simulated with 100 volatile
users from the FLASH dataset’ (WWW ‘21)

[1] Characterizing impacts of heterogeneity in federated learning upon large-scale smartphone data o4



Three practical issues In distributed DP

1. Privacy Issue: caused by client dropout

- Insufficient noise for target privacy

55



Three practical issues in distributed DP

1. Privacy Issue: caused by client dropout

- Insufficient noise for target privacy

B privacy cost

%’ 9 486 T .. - 60 “g 9979 f N - 60
% 618 - ) a0 26 Rt T4
§ 3 - rivacy budget = 6 L 50 § 3 - Privacy budget = 6 L 50
SRS 0o & oL 0
Orig Orig
CIFAR-10 CIFAR-100

Testbed Testbed



Three practical issues in distributed DP

1. Privacy Issue: caused by client dropout

Naive solutions and their limitations

- Early: early stop when budget runs out—hurts utility

Privacy budget = 6

Privacy Cost
S W O O

B privacy cost accuracy
- 8.660_7_6_6 __________________ l ______ = 60
U41.0
TR Wwe - 40
- | i
| | O
Orig Early
CIFAR-10
Testbed

2 9779 _ 60
o
O £ - 6.0 I
5”6 5 A0 . . 0
23 - 20
A 0 | | 0
Orig Early
CIFAR-100
Testbed
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Three practical issues in distributed DP

1. Privacy Issue: caused by client dropout

Privacy budget = 6

Privacy Cost
S W O O

Naive solutions and their limitations

- Con: proactively add more noise—requires expertise

B privacy cost accuracy
-, 8.660.7 7.260.7_ 60
B R L 40
7 - 20
. ; 0
Orig Con2

CIFAR-10

= - 60

8 _____________________ ‘-__6;4

> 327 A 304" 40

20

o I 0
Con2

CIFAR-100

Too optimistic: privacy compromised
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Three practical issues in distributed DP

1. Privacy Issue: caused by client dropout

Naive solutions and their limitations

- Con: proactively add more noise—requires expertise

Privacy budget = 6

Privacy Cost
S W O O

B privacy cost accuracy
_8.66(_)_7_________________6_Q3 607_ 60
7 - 40
7 - 20
. 0
Orig ConS Con2

CIFAR-10

< 9979 - 60
&
3 7 B2 _'_'_'_'_'_ __________ % 6275 304|' 40
£3- ] - 20
A~ 0 I 0
Orig Con5 C0n2
CIFAR-100

Too pessimistic: utility may or may not suffer
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Dropout-resilient noise enforcement

Goal: achieve the best privacy-utility tradeoff without domain knowledge

60



Dropout-resilient noise enforcement

Intuition: add-then-remove
- Each client first adds excessive noise as separate components

Excessive Level
«

Noise - I - -
Addition




Dropout-resilient noise enforcement

Intuition:; add-then-remove

- Each client first adds excessive noise as separate components
- After aggregation, unnecessary ones are removed by the server

Noise
Addition

Noise
Removal

Result

Excessive Level
«

I ' i

{} | Noise

— — 1 Negation

Necessary Level — —' of Noise

62



Dropout-resilient noise enforcement

Concrete example

Sampled clients |S| = 4

Minimum necessary noise level 0*2 =1

63



Dropout-resilient noise enforcement

Concrete example
Each client adds noise n; ~ x(1/2)

to tolerate up to 2 clients to drop

Sampled clients |S| = 4
Add  Dropout tolerance t = 2,

Minimum necessary noise level 6*2 =1

64



Dropout-resilient noise enforcement

Concrete example _ .
Each client adds noise n; ~ x(1/2)

illients " to tolerate up to 2 clients to drop
Sampled clients |S| = 4 o '\77/1-0_:’;((1_/4_1)_ ;1;1- ;_X_(l_/EZ_)_ %1-’2—; ;<(_1—/f_i)jl
Add  Dropout tolerance t = 2, oo~ X(1/4) naq ~ x(1/12) nas ~ x(1/6)
Minimum necessary noise level 62 = 1 nzo~ x(1/4) nz1~ x(1/12) nz2 ~ x(1/6)
O nao~x(1/4) nay ~x(1/12) naz ~ x(1/6)



Dropout-resilient noise enforcement

Concrete example

If O client drops

Achieve target noise 02 = 1

2= oy \
Then remove & |n1,0::n1,1 L2
| [
1m2,011M21 N22 |5
|
|
[
|

JAOWIAI O],
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Dropout-resilient noise enforcement

Concrete example

If 1 client drops

Achieve target noise 02 = 1

Then remove |

| I |
12,0 n2,1|, n22 —»
|
)

OAOWIDI O],
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Dropout-resilient noise enforcement

Concrete example

Then remove

If 2 client drops

Achieve target noise 02 = 1

y

_________

@ :nl,O ni1 M1,2
|
M2,0 M2,1 N2l
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Dropout-resilient noise enforcement

Formal definition: XNoise

o?

S| —1
t 2 2

components: ;= Y n, n )(( i ) and n )(( o
S AR TR A T NS = ke + DS = k)

Noise addition: decompose Client i’s added noise #; ~;(< ) into 7+ 1

) &k ey

- Noise removal: when there are |D| clients dropping out, the noise components »;

contributed by the surviving clients i € S\ D with the index k > | D| becomes excessive
and is removed by the server

69



Dropout-resilient noise enforcement

Preventing adversarial server from understating dropout
- Mislead survivals to remove more noise than needed

Secure aggregation
: - %
1

aly
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Dropout-resilient noise enforcement

Preventing adversarial server from understating dropout

- Enable verification via a secure signature scheme

Secure aggregation
: - %
1

aly
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Dropout-resilient noise enforcement

Orig - == XNoise
Effectiveness

72



Dropout-resilient noise enforcement

Orig ==+ XNoise Privacy budget = 6
Effectiveness = = z
=) |O| g - =)
o S ° o 81
Improves privacy © > ©
Q Q
Cg 6_lﬁﬁﬁlﬁﬁﬁlﬁ g 6-I — T C'g 6_lﬁﬁﬁlﬁﬁﬁlﬁ
~ 0 20 40 T 0 20 40 =~ 0 20 40
Dropout Rate (%) Dropout Rate (%) Dropout Rate (%)
(a) FEMNIST. (b) CIFAR-10. (c) Reddit.
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Dropout-resilient noise enforcement

Effectiveness

without sacrificing
final model utility

slesele(

Dropout rates

d 0 10% 20% 30% 40%
Ori XNo | Ori XNo | Ori XNo | Ori XNo | Ori  XNo
F| 613 614 | 614 614 | 61.2 614 | 61.2 612 | 614 615
C| 665 663 | 667 66.9 | 66.6 65.7 | 643 65.7 | 63.8 64.2
R | 2169 2142 | 2158 2179 | 2286 2285 | 2294 2317 | 2299 2329
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Dropout-resilient noise enforcement

Effectiveness
: - 60, —_ 61.71 _ 16.08 ~ 05 6.68
and incurs £ 59 449 £ 50 14846 g 13,33 O
acceptable g 93% P :E; 98% A g 90% 2% g 207 939 R
a 0- I T 2 0 = 0 - T T = 0- T T
( S 34 %) Orig XNoise Orig XNoise Orig XNoise Orig XNoise
runtime cost FEMNIST@CNN FEMNIST@ResNet18 CIFAR10@ResNet18 CIFAR10@VGG19

Example: no dropout 75



Three practical issues In distributed DP

2. Performance Issue: expensive use of secure aggregation

76



Three practical issues in distributed DP

2. Performance Issue: expensive use of secure aggregation
- Extensive use of secret sharing and pairwise masking

77



Three practical issues in distributed DP

2. Performance Issue: expensive use of secure aggregation

- Dominates the training time (at least 91%)

agg B other

=
2 1.0 - 0.95
= 0.73
- 0.47 o
o - U. 0
§ 0.5 1% 049 95%
S 91%

0.0 ! . .

32 48 64

Number of Sampled Clients

original secure aggregation: SecAgg
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Three practical issues In distributed DP

2. Performance Issue: expensive use of secure aggregation

- Follow-up solutions
- e.g. SecAgg+: improves asymptotically

79



Three practical issues In distributed DP

2. Performance Issue: expensive use of secure aggregation

- Follow-up solutions have inefficiencies
- e.g. SecAgg+: improves asymptotically, but not so helpful in small-scale practice?

[E—
-
|

)
2 U
= 0.5 - 0.53
2 0.37 94%
g 91% 3%
o7

0.0 | . I

32 48 64

Number of Sampled Clients

SOTA secure aggregation: SecAgg+
80

[1] Towards federated learning at scale: system design, MLSys ‘19



Pipeline-parallel acceleration

Goal: leverage the underutilized resources in the system level

81



Pipeline-parallel acceleration

Approach:
- Step 1: Identify the types of system resources

s-comp. the compute resources

e.qg., CPU, GPU, and memory) of
the server
& 7 &7
D c-comp. the compute resources of
— Secure aggregation Clients
— AN

comm. the network resource used

-
4~
4} for server-client communication

82



Pipeline-parallel acceleration

Approach:

- Step 2: Group consecutive operations that use the same system resources

>

Step Operation

Stage (Resource)

1
2
3
4
5
6
7
8
9

10
11

Clients encode updates.

Clients generate security keys.
Clients establish shared secrets.
Clients mask encoded updates.

Clients upload masked updates.
Server deals with dropout.

Server computes aggregate update.

Server updates the global model.
Server dispatches the aggregate.

Clients decode the aggregate.
Clients use the aggregate.

1 (c-comp)

2 (comm)

3 (s-comp)

4 (comm)

5 (c-comp)

83



Pipeline-parallel acceleration

Approach:

- Step 3: Evenly partition each client’s update into chunks and pipeline their processing

Stage 1 (c-comp) 2 (comm) [[] 3 (s-comp) 4 (comm) 5 (c-comp)

Chunk 1 (/LA NN
Chunk 2 % '/ \\\\

Chunk 3 /,

\\\\

» Time




Pipeline-parallel acceleration

Approach:

- Solve an optimization problem to determine the optimal number of chunk, m*

m* = arg min f,
meN,
t. f..=b. . +1
e b Definition of the finish time of
b. = max{ Ogos Ty} Chunk m at Stage a

s,C

0,
0. =
e fs—l,c

ifs =0, o chunk sequential
execution

rs,c —

f

0, ifs =0andc =0,
fq,mor 1, ifs#0andc =0,

fs,c—l’

otherwise

"

Exclusive allocation
& Inter-chunk sequential execution

85



Pipeline-parallel acceleration

Effectiveness: _
(M A maximum speedup of 2.4X

w/ or w/o
pipelining
/
= 3226
=
g 2) 94%15.68
= 87%

Case study: CIFAR10 @
VGG19, dropout rate = 30%

86



Pipeline-parallel acceleration

Effectiveness: _
(M A maximum speedup of 2.4X

3546 O

94%15.68 94%17.3
87% 89%

Time (min)
N
N

S

Orig XNoise

N

Case study: CIFAR10 @ w/o or w/
VGGET9, dropout rate = 30%  our noise enforcement
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Pipeline-parallel acceleration

Effectiveness: _
(M A maximum speedup of 2.4X

3546 2 a3 312

94%15.68 94%113. 93941476 94%16.11
87% 89% 86% 88%

Time (min)
N
N

0
Orig XNoise  Origt  XNoise+
RV/__J RV/__J
Case study: CIFAR10 @ Implemented using

VGG19, dropout rate = 30% SecAgg or SecAgg+
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Pipeline-parallel acceleration

plain-agg BN plain-other pipe-agg I pipe-other
60 5. 7.94 9.349.19
2 5] aa0ass B 1430 T | o836 BB 567 T | R T
z R g IR 372376 = am  E 5 oot 502497 2.675.54 ES - 59860 644623
2 93% orms ¢ % o1% 899 93% 91% 2 5% BEN - ™ 2% %% 93% 2 %% 95% 0% % e 93 9% 93%
E— 0 1 T T T E— 0 T Ll T T — O T T |l 1
Orig XNoise  Origt  XNoise+ Orig XNoise  Orig+  XNoiset Orig XNoise  Origt  XNoise+
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Aggregation Protocol

(a) FEMNIST, CNN, d = 0%.

Aggregation Protocol

(b) FEMNIST, CNN, d = 10%.
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(c) FEMNIST, CNN, d = 20%.
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(d) FEMNIST, CNN, d = 30%.

@ The gains are consistent across different dropout rates

A

@) It scales
with
number of
participants
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Three practical issues in distributed DP

nd

Distributed DP can be made more practical,
by enforcing target privacy in the presence of client dropout
and optimizing execution efficiency.

T

EuroSys ‘24
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Three practical issues In distributed DP

3. Security Issue: assume honest majority among participants
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Three practical issues in distributed DP

3. Security Issue: assume honest majority among participants
- Adversarial server can game participant selection

- Secure VS

* aggregation
1 N\
ﬁ =

uondwnssy
Aljeay

|
[¢] [«
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Three practical issues In distributed DP

3. Security Issue: assume honest majority among participants

- Secure aggregation breaks

—_—

some threshold

/

Dishonest participant rate

o

Attacker success rate

>
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Three practical issues in distributed DP

3. Security Issue: assume honest majority among participants

Attacker success rate

—_—

o

distributed DP degrades

some threshold

/

Dishonest participant rate

>

Privacy Cost

20 -

10 -

=@~ budget ;=3 19.9
budget ;=6

budget £~ =9
S 11.8

6.3

0 10 20 30 40

Dishonest Participant Rate (%)
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Three practical issues in distributed DP

3. Security Issue: assume honest majority among participants

- The problem has been overlooked:

External Hacker

* % % %

Disgruntled Employee

Even for a reputable company “Mostly Honest”
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verifiable

Goal: to know whether the server manipulates the selection
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Self-sampling with verifiable randomness

Secure random selection

'
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Self-sampling with verifiable randomness

Secure random selection
- Self-sampling
- Each client 1 in the population
- Joinifr; € [O,R) < pR for some p € (0,1)

X
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=

52 $

& |

=

W

& |
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Self-sampling with verifiable randomness

Secure random selection

- Mutual verification
- Each client i claiming to join

- Proceed only if r; < pR for Vj # i




Self-sampling with verifiable randomness

Secure random selection

- Mutual verification
- Each client i claiming to join

- Proceed only if r; < pR for Vj # i

NG




Self-sampling with verifiable randomness

Secure random selection ﬁ @
/]

- Prevent forging: verifiable random functions (VRFs)
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Self-sampling with verifiable randomness

Secure random selection ﬁ

]
- Prevent forging: verifiable random functions (VRFs)

- Assume each client i has a key pair (sk;, pk;) with integrity guaranteed by a PKI
- Foreachj # i, client i also verifies that VRF.ver(pk-, r, . JZ'-) =1

— The test passes only if 3, 7; = VRF. eval(s

[ secret key, bound to]7 F Round index, public ]

Neither can be manipulated!
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Self-sampling with verifiable randomness

Secure informed selection
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Self-sampling with verifiable randomness

Secure informed selection

4 High
w
5 O
@ O
o O 3
O S
O O =
O o)
Example: O
P O Low
Oort o
\_ Data quality
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Self-sampling with verifiable randomness

Secure informed selection

&% fh T
1 D
% . Direct: refer to fake metrics
.‘E % Have a Gaming . to |
| e favor! Indirect: optimize the referred metrics
| S
% fa

105



Self-sampling with verifiable randomness

Secure informed selection
- Prevent gaming: verifiable randomness has to be introduced to the last mile

% i /e

T 1 ] e []
z D ﬁ ~A A% Have a
D Y | e favor!

[
LI
!

I

Secure random selection
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Self-sampling with verifiable randomness

Secure informed selection

O

- Achieve the expected effect of selection: the server refine the population in advance

@) @)
@)

To retain
Se
o) O O
0O o)
o o)
To exclude
T R

Data quality

Population refinement

_|_

)
LI

[
LI

Secure random selection

[

i/

.‘AD

Have a
favor!
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Lotto: Self-sampling with verifiable randomness

Effectiveness
Random selection

(D Provably aligns the fractions of compromised participants to the base rate of dishonest
clients in the population
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Lotto: Self-sampling with verifiable randomness

Effectiveness

Random selection

(D Provably aligns the fractions of compromised participants to the base rate of dishonest

clients in the population

Assumption:

* Population size n = 200k

* 0.1% dishonest clients in
the population

Pr. Bound

— W/ Lotto

- == w/0 Lotto

| | | 1
0.0 0.1 0.2 0.3 0.4
Portion of Dishonest Participants (x/s)

)

10% dishonest clients in
the participant
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Lotto: Self-sampling with verifiable randomness

Effectiveness

Random selection

@ with acceptable runtime cost ( < 10 %) and negligible network overhead ( < 1 %)

FL Application FEMNIST@CNN ‘ Openlmage @MobileNet | Reddit@ Albert
Time Network | Time | Network | Time | Network
Population . Protocol : : : : : :
| Server Client | Server Client | Server Client | Server Client | Server Client | Server Client
Rand 1.76min 0.97min | 64.88MB 3.9MB 3.06min 2.28min | 64.35MB 3.87MB 13.0min 6.67min | 958.55MB 57.46MB
100 Cli-Ctr 1.86min 1.26min | 64.94MB 3.9MB 307min 2.44min | 644MB 3.87MB | 12.86min 8.8min 058.6MB 57.46MB
Srv-Ctr | 1.77min  0.97min | 64.89MB 39MB | 2.97min 2.17min | 64.36MB 3.87MB | 12.88min 6.58min | 958.86MB 57.46MB
Rand 2.56min 1.4min 0.26GB 3.56MB | 4.35min 3.36min 0.25GB 3.53MB | 26.94min 15.65min 3.75GB 51.53MB
400 Cli-Ctr | 2.59min 1.83min 0.26GB 3.56MB | 4.68min 3.89min 0.25GB 3.53MB | 27.53min 21.95min 3.75GB 51.53MB
Srv-Ctr | 2.29min 1.3min 0.26GB 3.56MB | 4.51min 3.49min 0.25GB 3.53MB | 27.17min 15.76min 3.75GB 51.53MB
Rand 3.46min 2.0lmin 0.45GB 3.6O0MB | 5.65min 4.1min 0.45GB 3.66MB | 40.06min 24.77min 6.56GB 52.57MB
700 Cli-Ctr | 3.82min 2.82min 0.45GB 3.6OMB | 6.23min 5.06min 0.45GB 3.66MB | 39.59min 33.91min 6.56GB 52.57MB
Srv-Ctr | 3.56min 2.02min | 0.45GB 37MB | 5.62min 4.06min | 0.45GB 3.66MB | 38.85min 23.84min 6.56GB 52.57MB
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Lotto: Self-sampling with verifiable randomness

Effectiveness

Informed selection

(D Security, overhead: similar
(2) Effectiveness of approximation: achieve comparable time-to-acc?
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Accuracy (%)

Lotto: Self-sampling with verifiable randomness

Effectiveness

Informed selection

(2) Effectiveness of approximation: achieve comparable time-to-acc!

S 30 - ?E'; 5 -
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0 10 20 30 0 10 20 30 40 50 0 10 20 30
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Three practical issues in distributed DP

K

Distributed DP can be made more secure,
by preventing the adversary from
manipulating the participant selection

process with verifiable randomness. Security 24

T
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My Work: build private and efficient cross-device FL

A
Target
- daCC
@
R Time-to-accuracy...
-~ Data leakage... '

» Time

Efficient asynchronous training (SoCC ’22)

Dropout-resilient & pipeline-accelerated distributed differential privacy (EuroSys ’24)

Secure participant selection (Security '24) 114



Future Work (3)
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Future Work (1/3)

1. Mitigating Stragglers atop Distributed DP
- Existing async FL is incompatible with distributed DP
- Straggler problems remain when distributed DP is employed
- Existing explorations fall short in applicability/model utility
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Future Work (2/3)

2. Extension of Federated Unlearning to the Participant Side
- Clients have the right to eliminate the impact of their data on the trained model
- Intermediate results (e.g. aggregated updates) are also sensitive and made public
- Existing research has overlooked this issue
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Future Work (3/3)

3. Harmonizing Efficiency, Privacy and Robustness in Single-Server Scenarios
- The trained model is open to data poisoning and model poisoning
- ldentifying malformed local updates contradicts with the spirits of privacy protection
- Existing remedies rely on two-server settings, which falls short in practicality

118



List of Publications

1. Y% Lotto: Secure Participant Selection

against Adversarial Servers in Federated
Learning. [USENIX Security 2024]

» Zhifeng Jiang, Peng Ye, Shigi He, Wei Wang,
Ruichuan Chen, Bo Li

. Y< Dordis: Efficient Federated Learning with

Dropout-Resilient Differential Privacy. [ACM
EuroSys 2024]

« Zhifeng Jiang, Wei Wang, Ruichuan Chen

. Yx Pisces: Efficient Federated Learning via

Guided Asynchronous Training. [ACM SoCC
2022]

» Zhifeng Jiang, Wei Wang, Baochun Li, Bo Li

. Towards Efficient Synchronous Federated
Training: A Survey on System Optimization
Strategies. [IEEE Trans. Big Data 2022]

» Zhifeng Jiang, Wei Wang, Bo Li, Qiang Yang

Gillis: Serving Large Neural Networks in
Serverless Functions with Automatic Model
Partitioning. [ICDCS 2021]

* Minchen Yu, Zhifeng Jiang, Hok Chun Ng,

Wei Wang, Ruichuan Chen, Bo Li

Feature Reconstruction Attacks and
Countermeasures of DNN Training in Vertical
Federated Learning. [IEEE TDSC 2024,
Pending Major Revision]

* Peng Ye, Zhifeng Jiang, Wei Wang, Bo Li,
Baochun Li

FLASHE: Additively Symmetric
Homomorphic Encryption for Cross-Silo
Federated Learning. [arXiv 2021]

» Zhifeng Jiang, Wei Wang, Yang Liu

The publications covered by this thesis is marked with <

Thank You!

119



