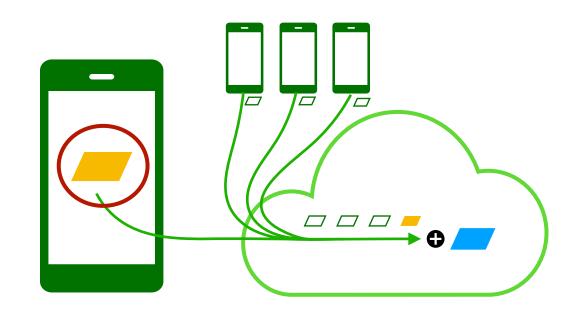
Lotto: Secure Participant Selection against Adversarial Servers in Federated Learning

Zhifeng Jiang, Peng Ye, Shiqi He, Wei Wang, Ruichuan Chen, Bo Li

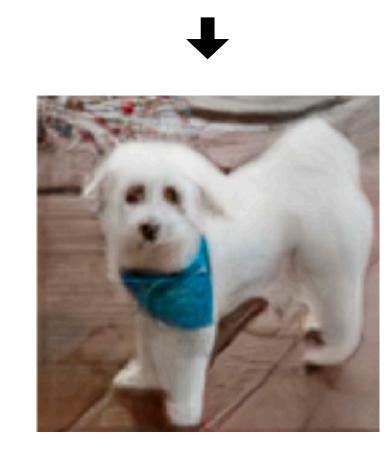


Privacy-Enhancing Technique

Federated Learning

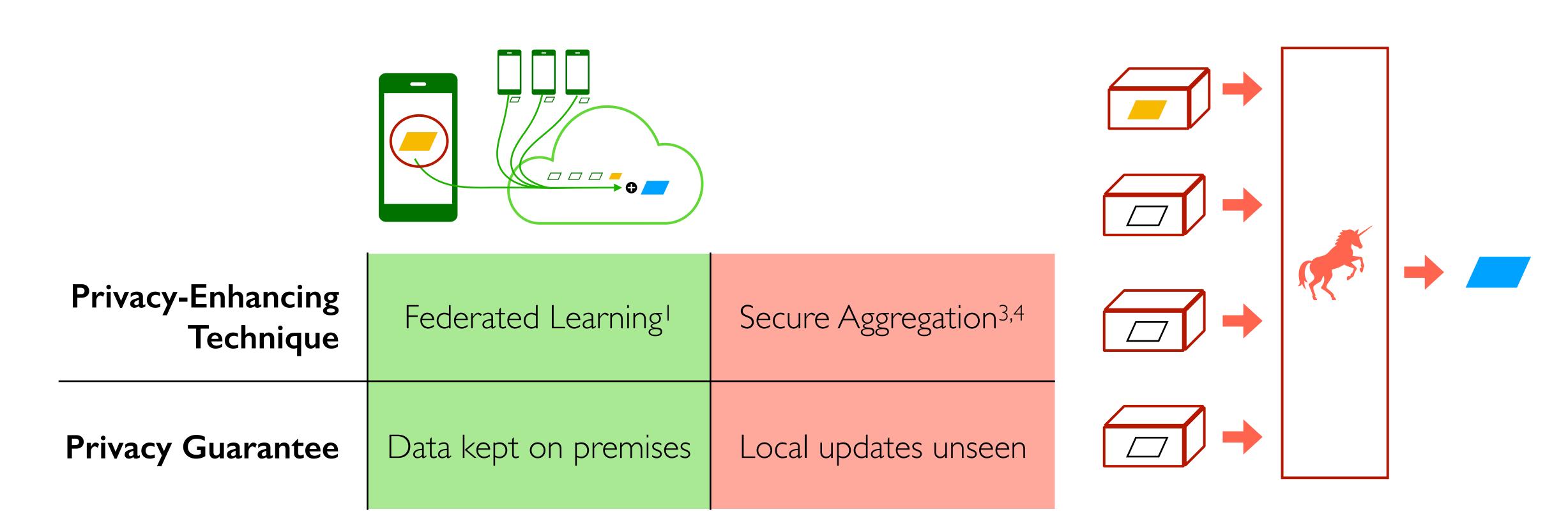
Privacy Guarantee

Data kept on premises



Reconstructed

Problem: Data can be reconstructed from **local model updates**²



3

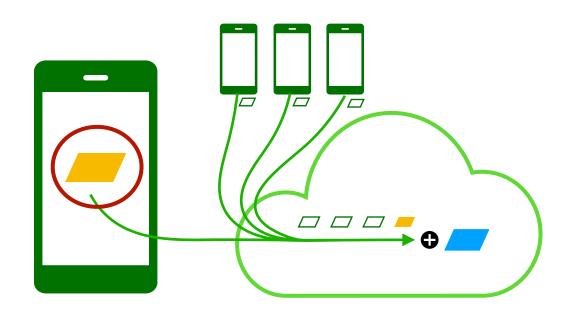
¹McMahan et al. "Communication-Efficient Learning of Deep Networks from Decentralized Data", In AISTATS '17

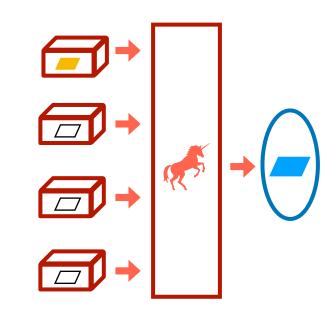
²Yue et al. "Gradient Obfuscation Gives a False Sense of Security in Federated Learning", In Security '23

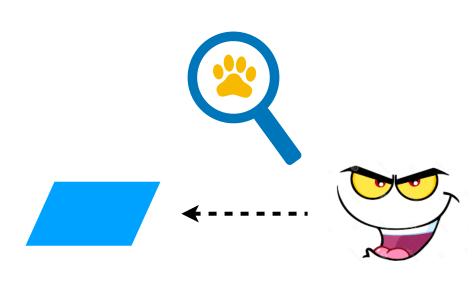
³Bonawitz et al. "Practical Secure Aggregation for Privacy-Preserving Machine Learning", In CCS '17

⁴Bell et al. "Secure Single-Server Aggregation with (Poly) Logarithmic Overhead", In CCS '20

4







Privacy-Enhancing Technique

Federated Learning

Secure Aggregation^{3,4}

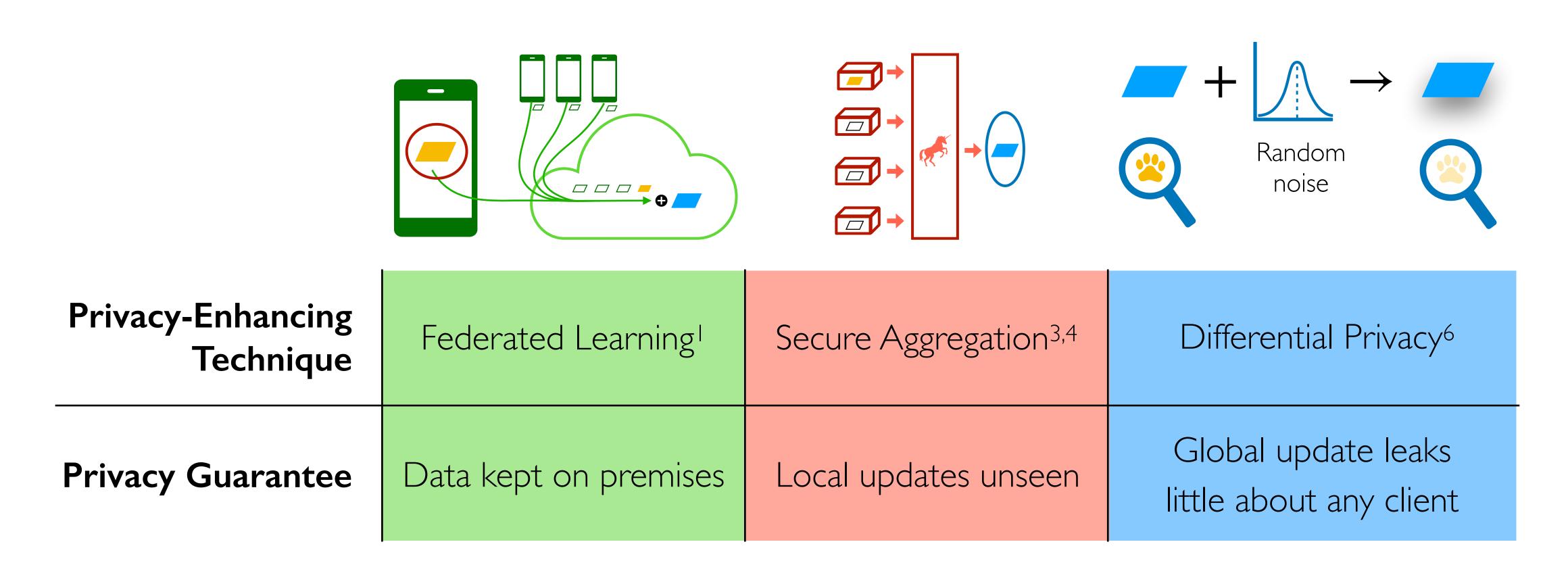
Privacy Guarantee

Data kept on premises

Local updates unseen

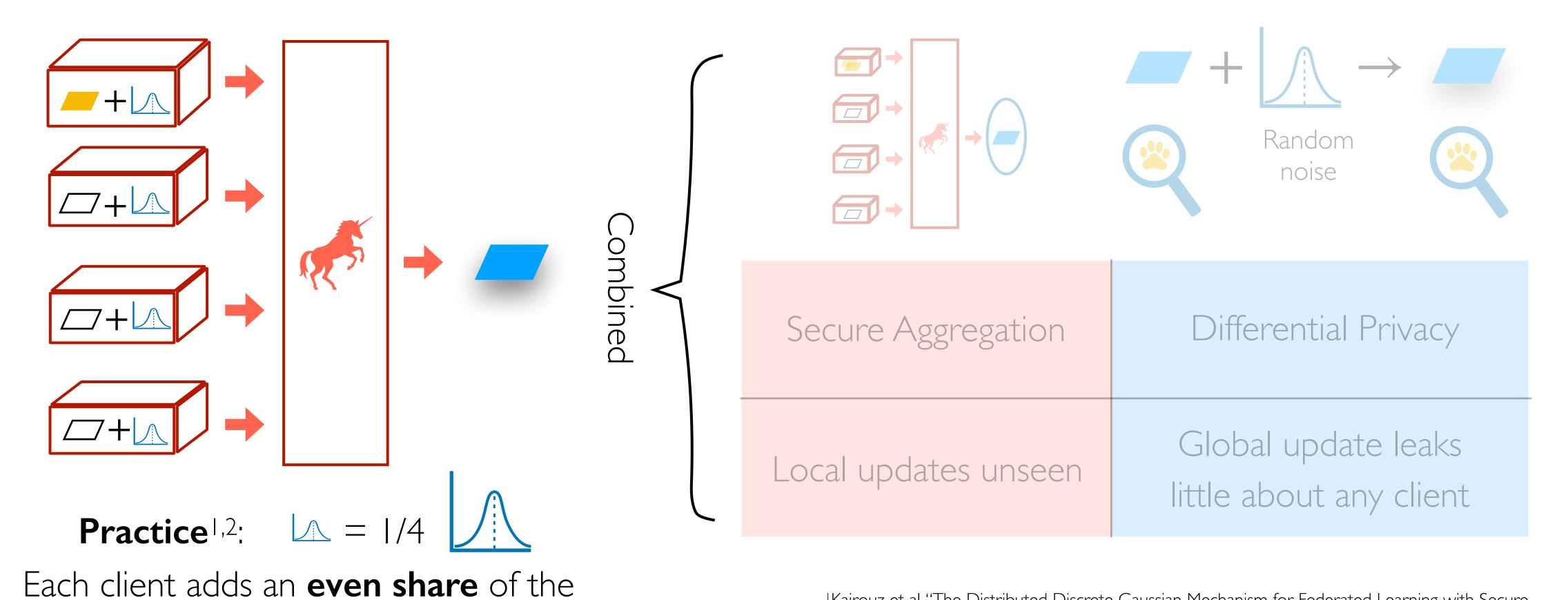
Problem: Data still has footprints in global model update⁵

¹McMahan et al. "Communication-Efficient Learning of Deep Networks from Decentralized Data", In AISTATS '17 ²Yue et al. "Gradient Obfuscation Gives a False Sense of Security in Federated Learning", In Security '23 ³Bonawitz et al. "Practical Secure Aggregation for Privacy-Preserving Machine Learning", In CCS '17 ⁴Bell et al. "Secure Single-Server Aggregation with (Poly) Logarithmic Overhead", In CCS '20



¹McMahan et al. "Communication-Efficient Learning of Deep Networks from Decentralized Data", In AISTATS '17 ²Yue et al. "Gradient Obfuscation Gives a False Sense of Security in Federated Learning", In Security '23 ³Bonawitz et al. "Practical Secure Aggregation for Privacy-Preserving Machine Learning", In CCS '17 ⁴Bell et al. "Secure Single-Server Aggregation with (Poly) Logarithmic Overhead", In CCS '20

⁵Nasr et al. "Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference Attacks against Centralized and Federated Learning", In S&P '19 ⁶Cynthia. "Differential Privacy", 06.

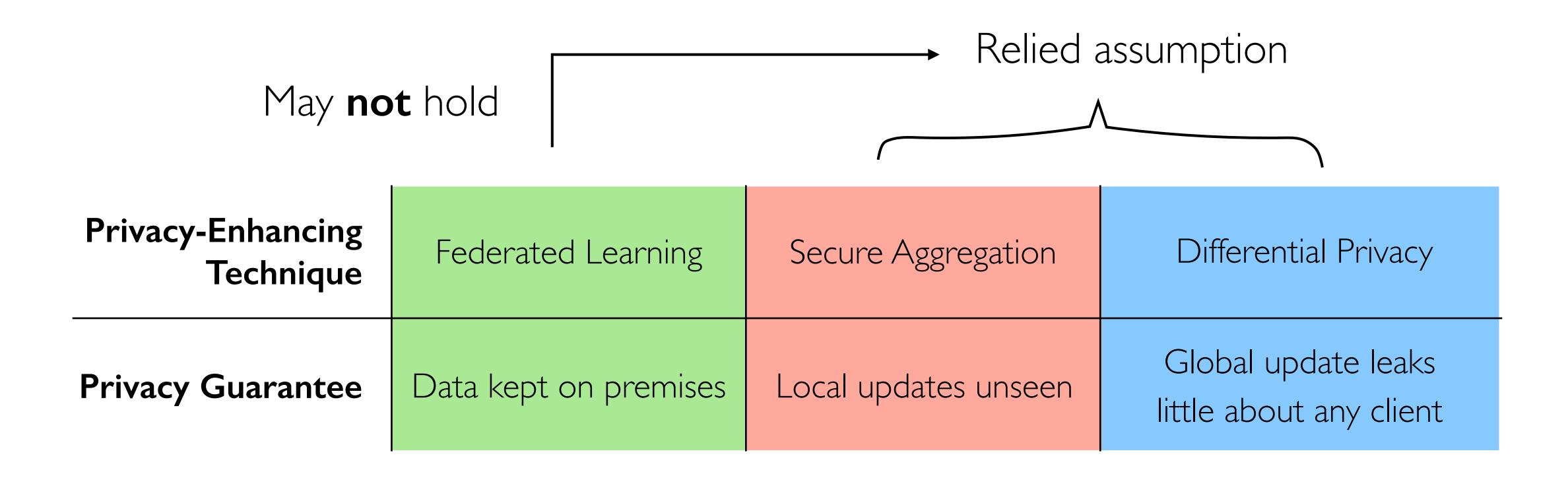


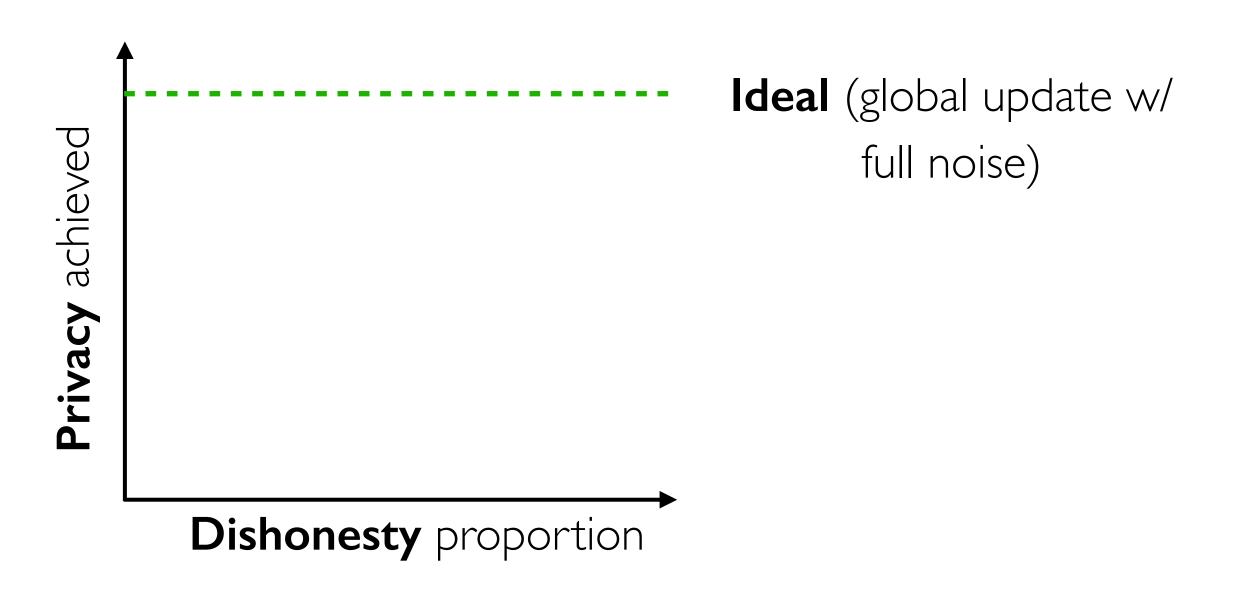
¹Kairouz et al. "The Distributed Discrete Gaussian Mechanism for Federated Learning with Secure Aggregation", In ICML '21

target noise to its local model update

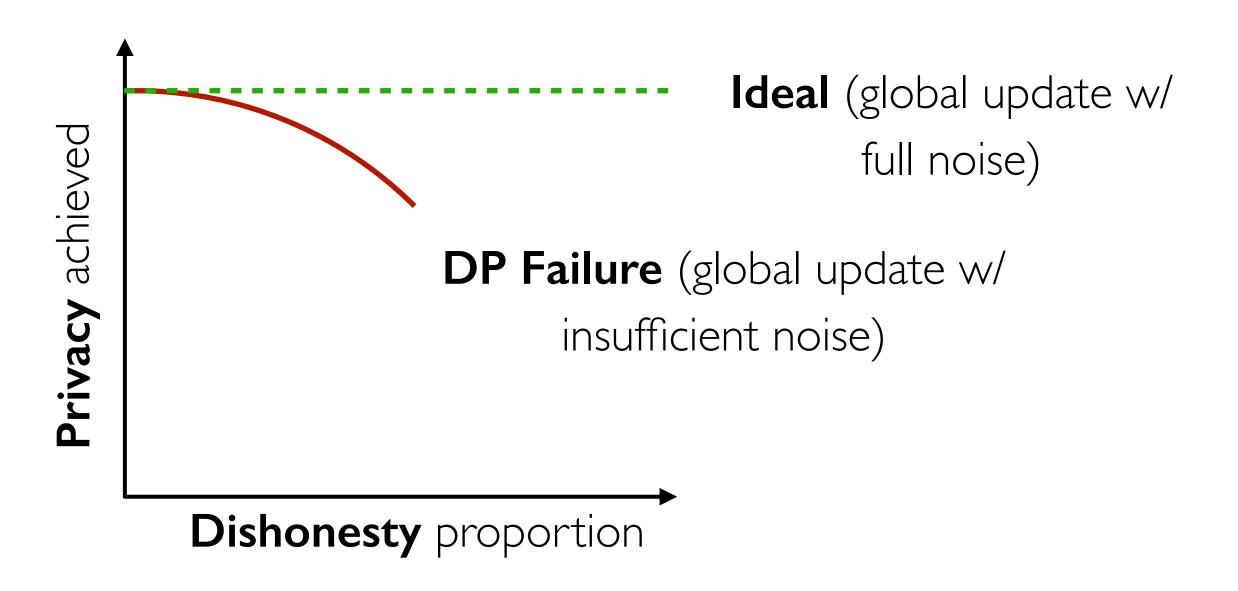
²Agarwal. "The Skellam Mechanism for Differentially Private Federated Learning", In NeurlPS '21

Privacy-Enhancing Technique	Federated Learning ¹	Secure Aggregation	Differential Privacy
Privacy Guarantee	Data kept on premises	Local updates unseen	Global update leaks little about any client

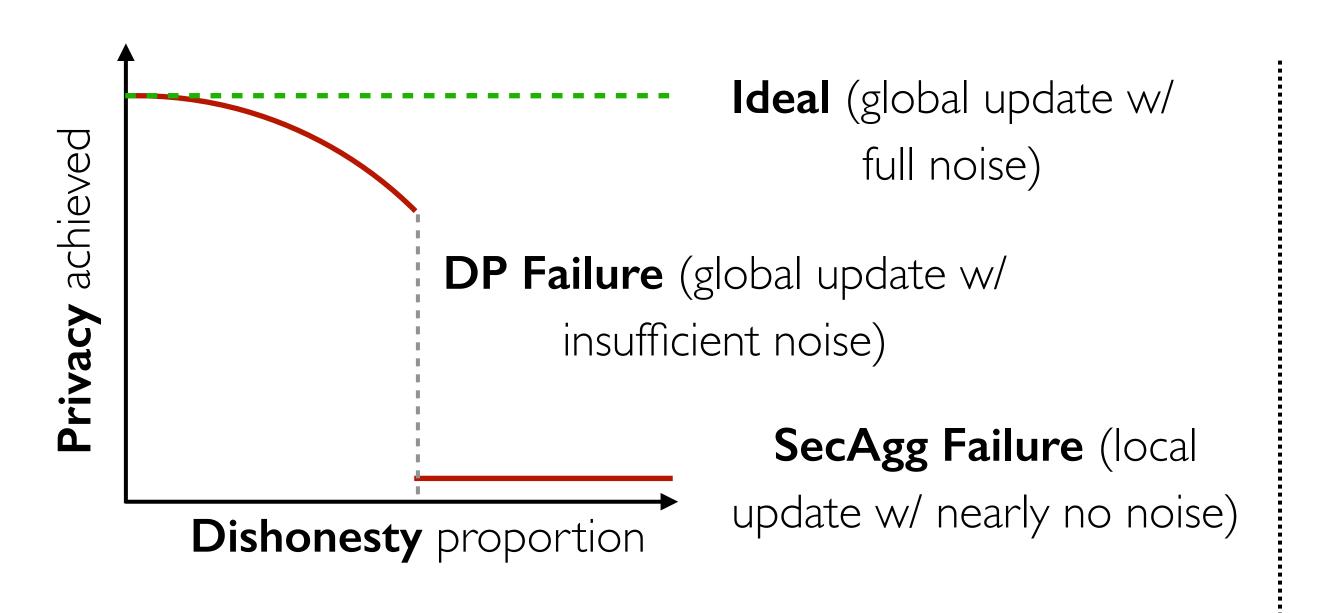




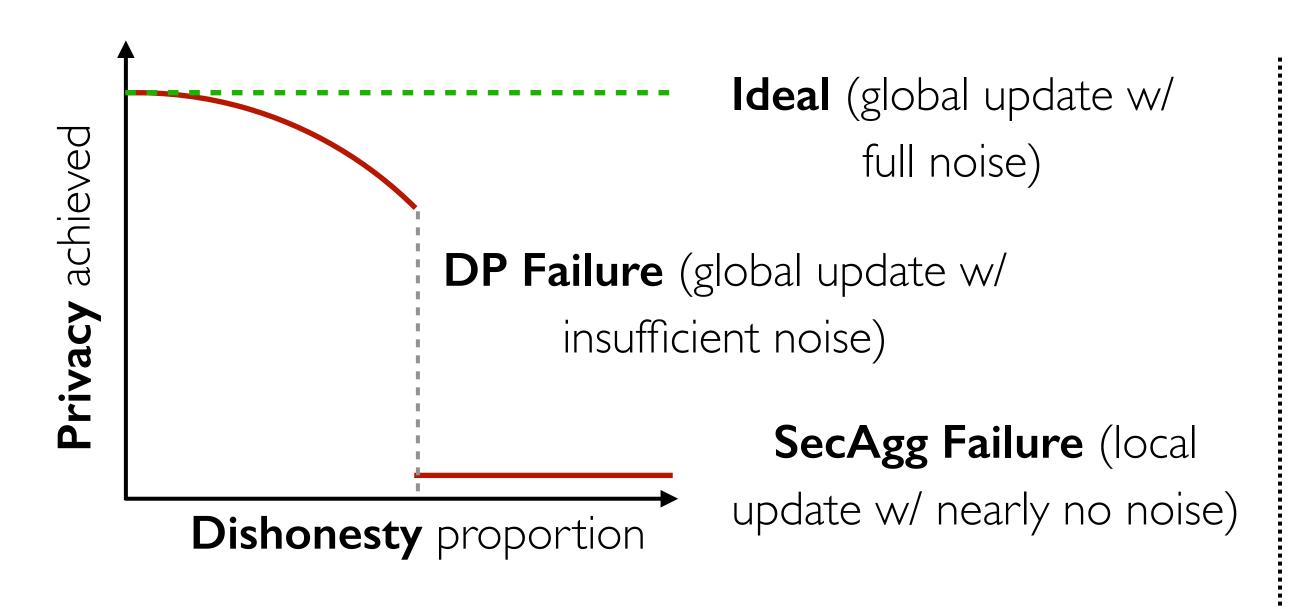
Secure Aggregation



Secure Aggregation

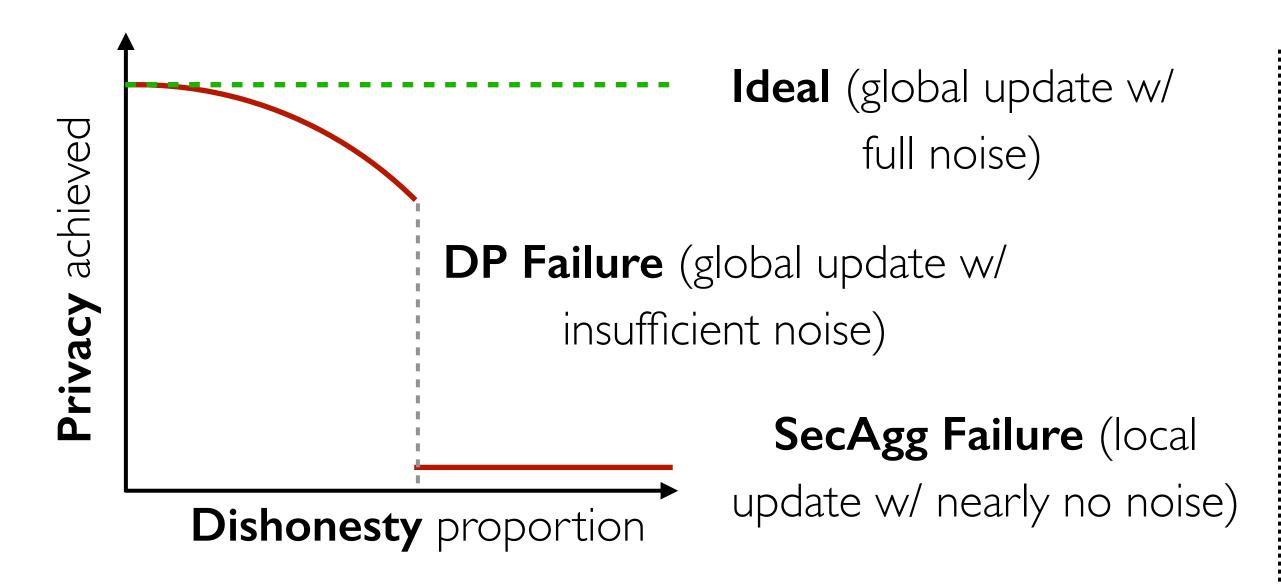


Secure Aggregation



Assumption: honest participants

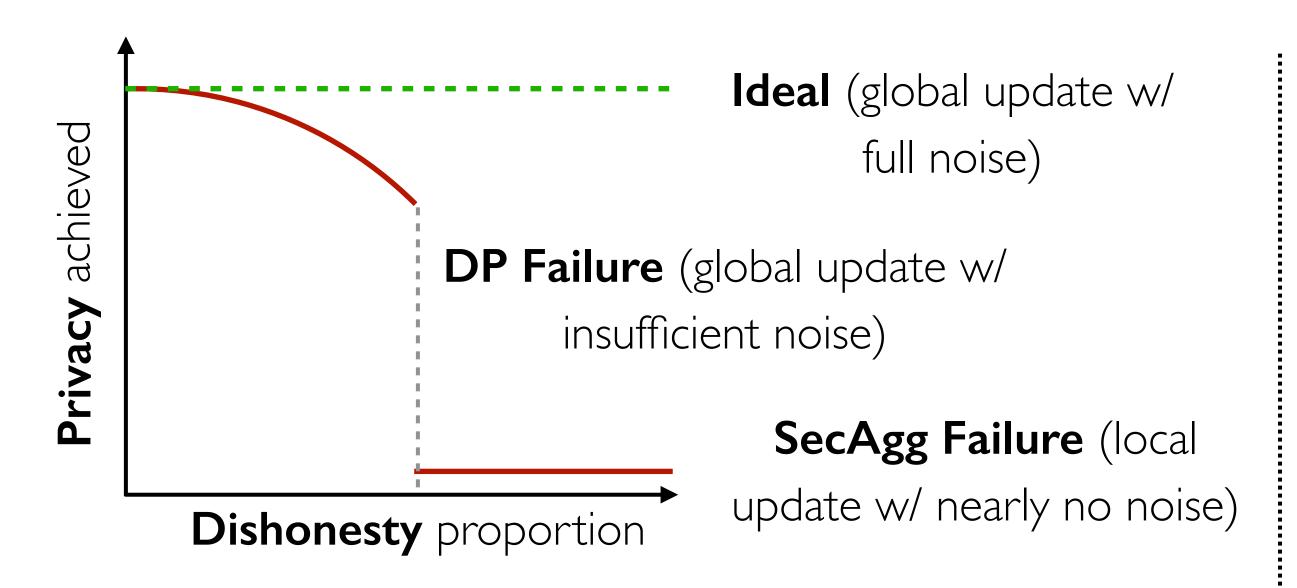
Secure Aggregation



Assumption: honest participants

Secure Aggregation

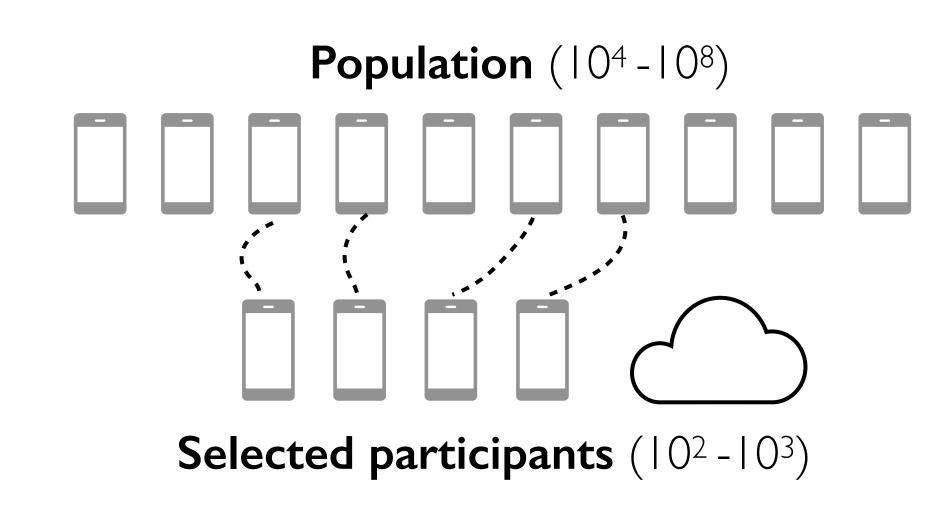
Differential Privacy

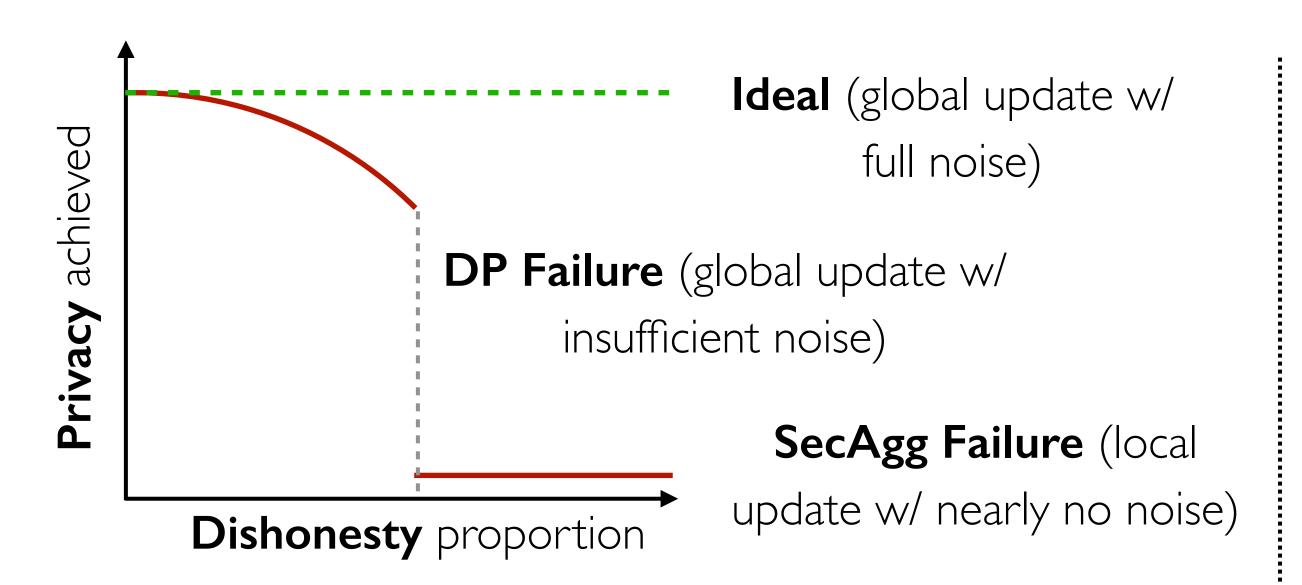


Assumption: honest participants

Secure Aggregation

Differential Privacy

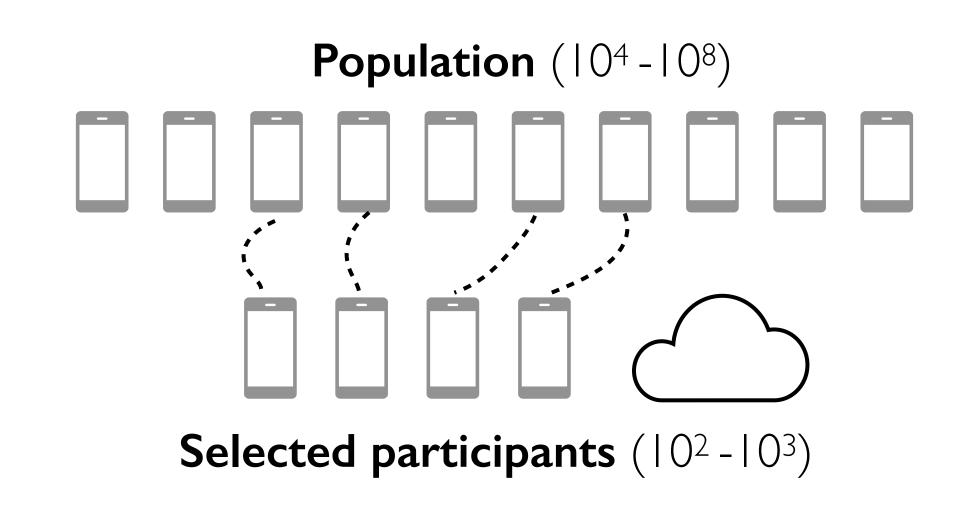




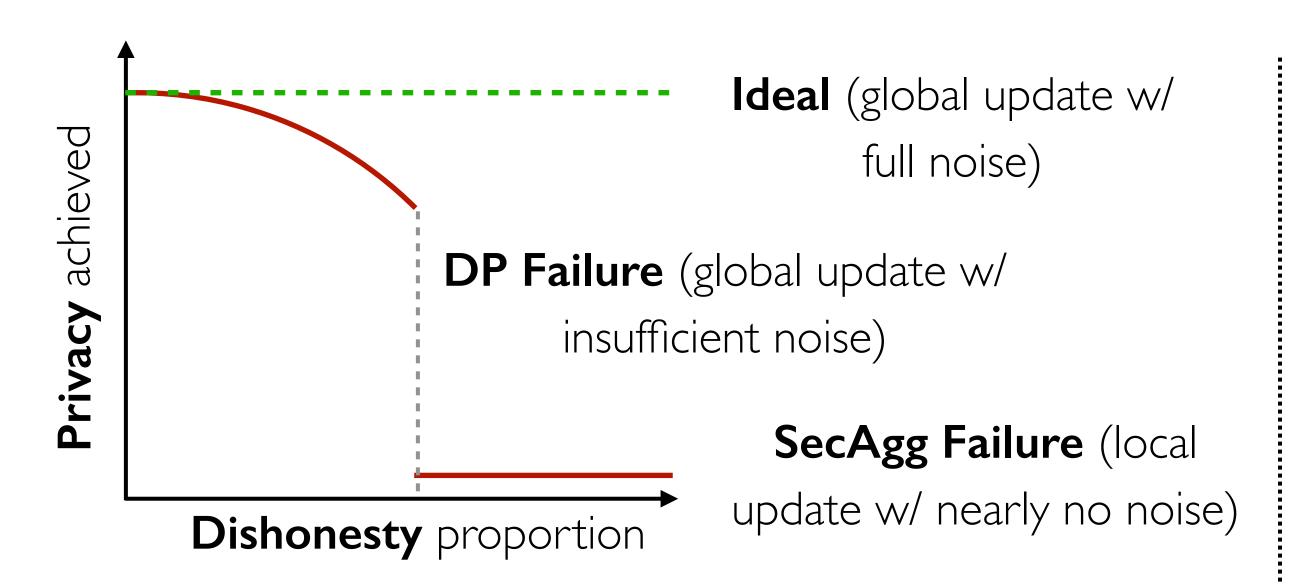
Assumption: honest participants

Secure Aggregation

Differential Privacy



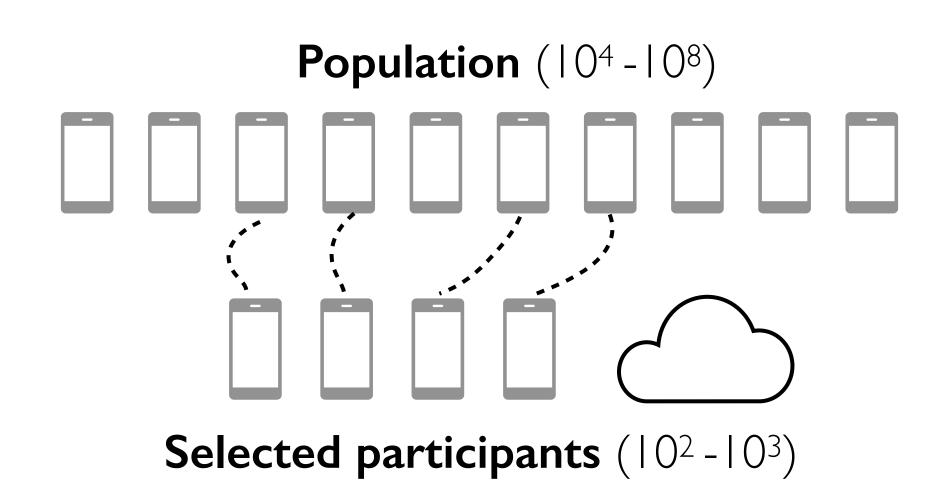
• Random: uniform chance



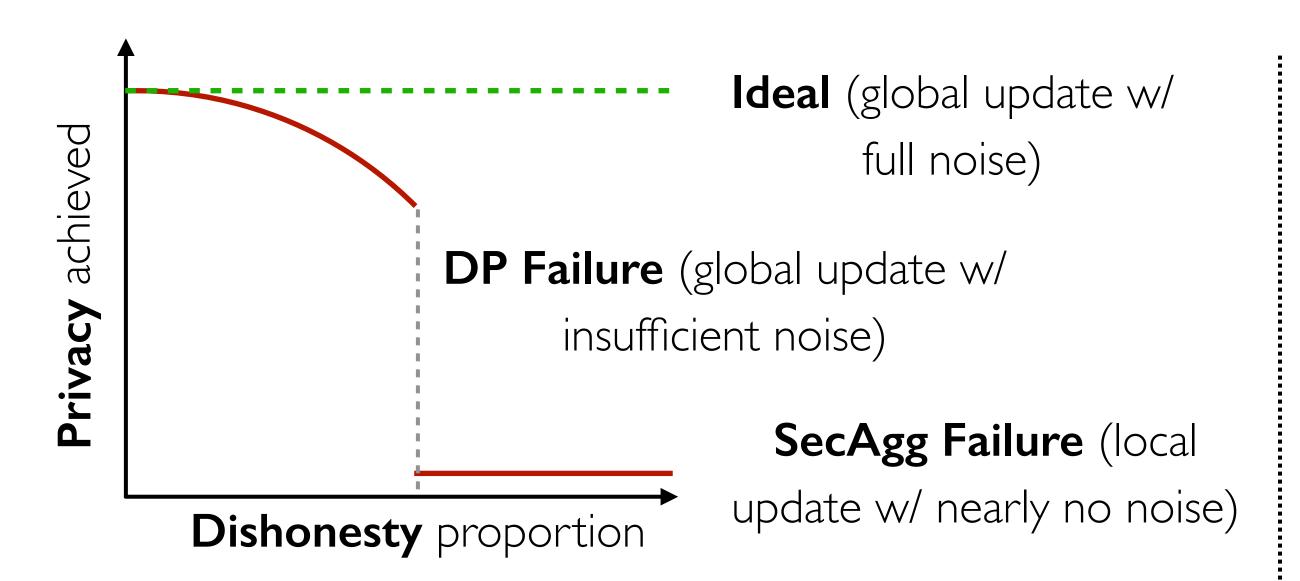
Assumption: honest participants

Secure Aggregation

Differential Privacy



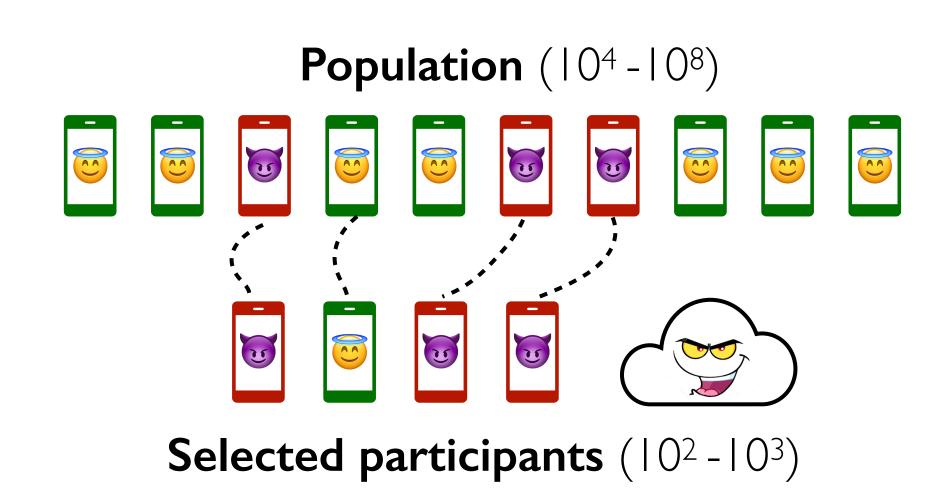
- Random: uniform chance
- Informed: "best-performing" clients are preferred (e.g., high speed and/or rich data)



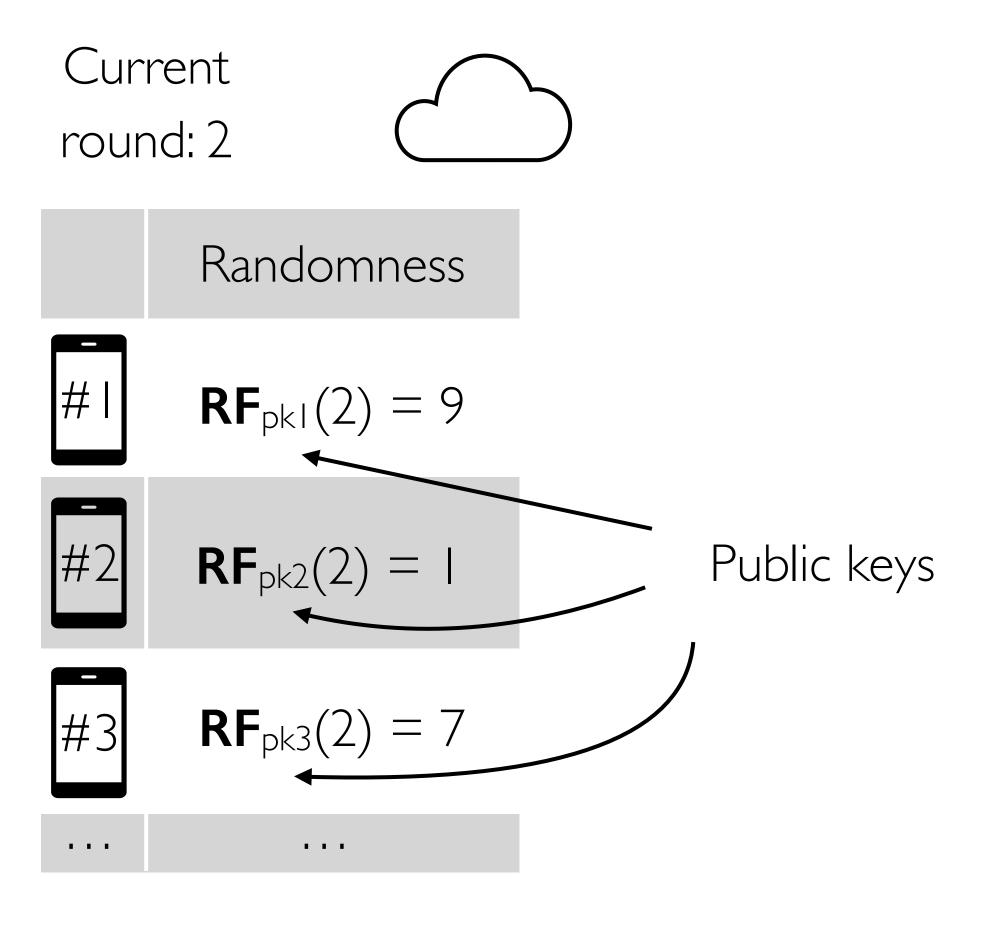
Assumption: honest participants

Secure Aggregation

Differential Privacy



Problem: participant selection can be manipulated by the malicious server

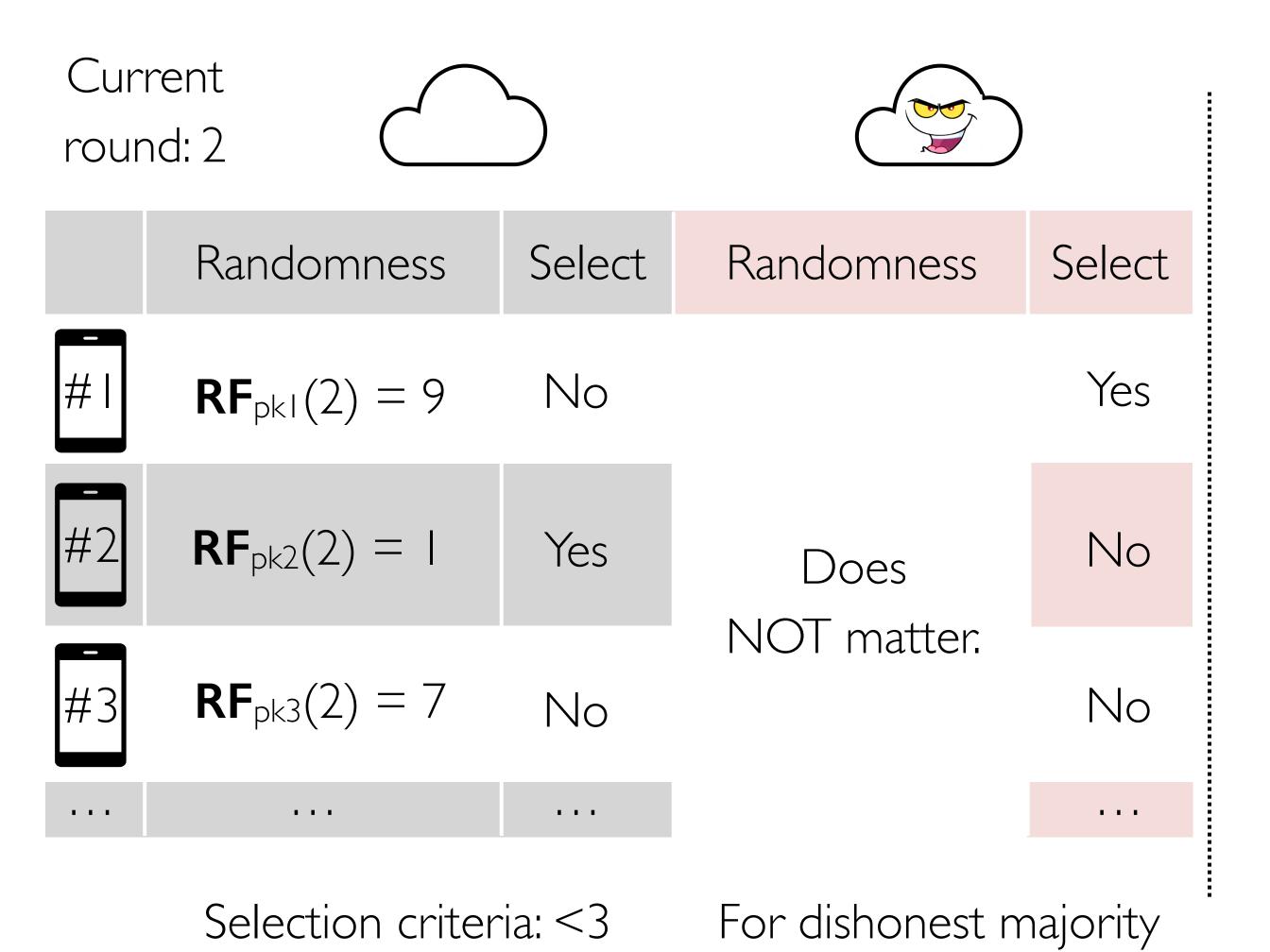


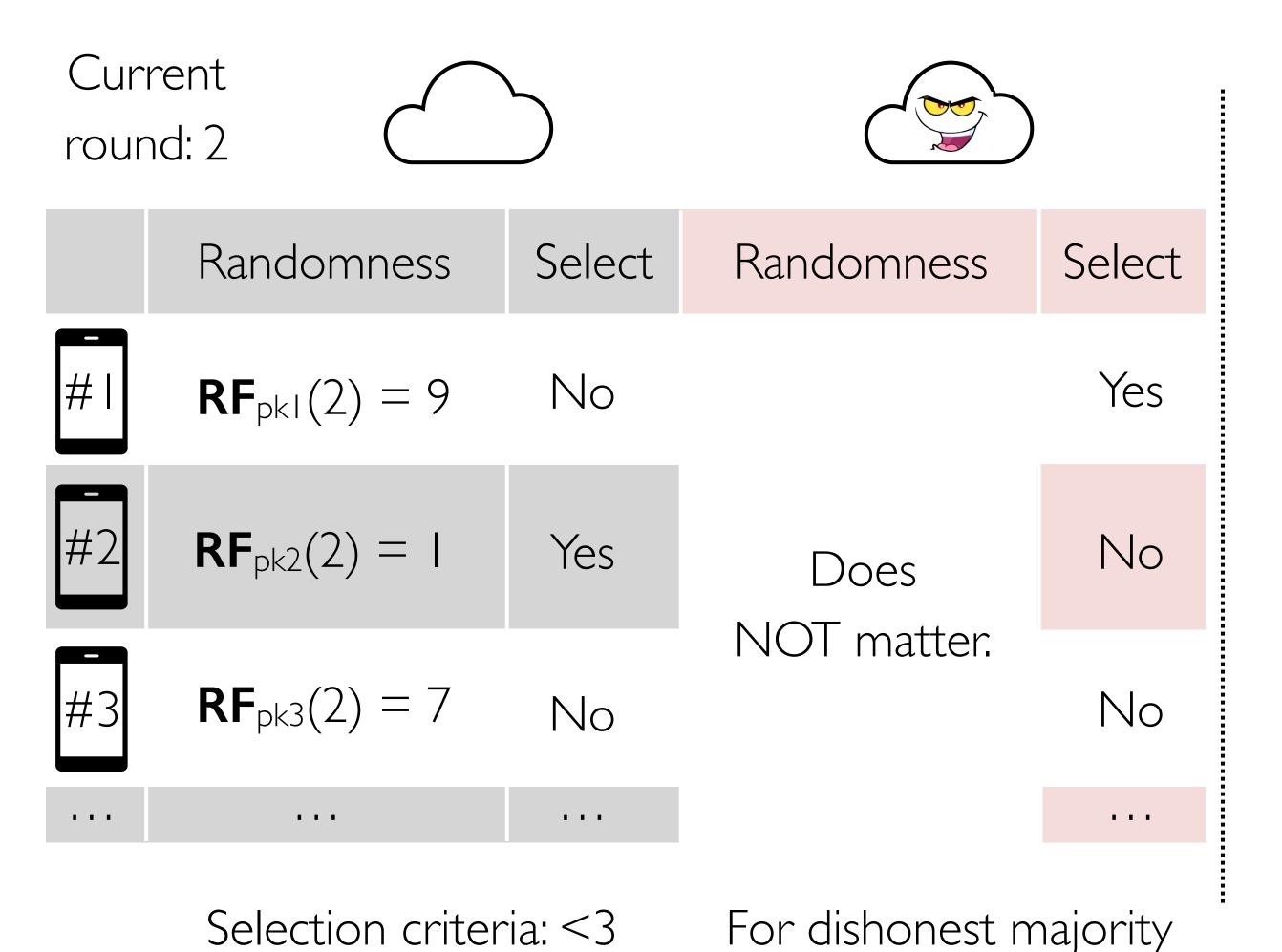
Selection criteria: <3

Current

rour	nd: 2	
	Randomness	Select
#	$RF_{pkl}(2) = 9$	No
#2	$\mathbf{RF}_{pk2}(2) = 1$	Yes
#3	$RF_{pk3}(2) = 7$	No

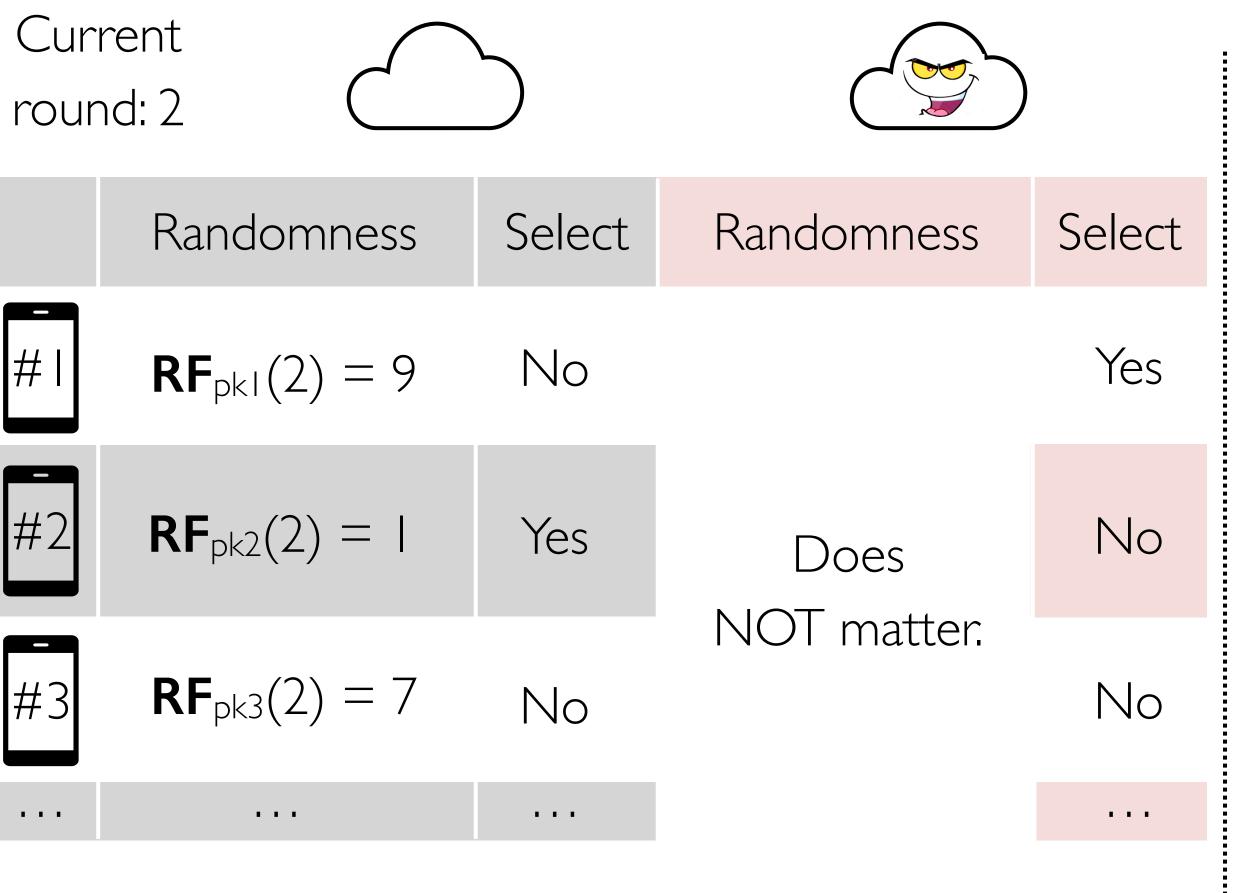
Selection criteria: <3





Potential approach:

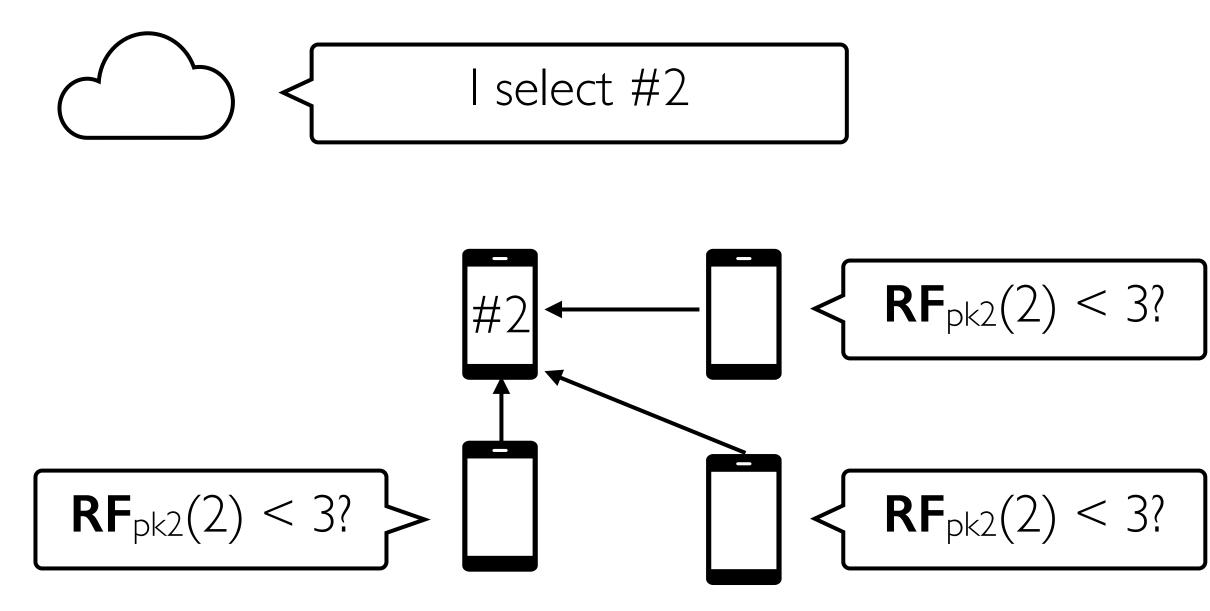
Mutual verification



Selection criteria: <3

Potential approach:

Mutual verification

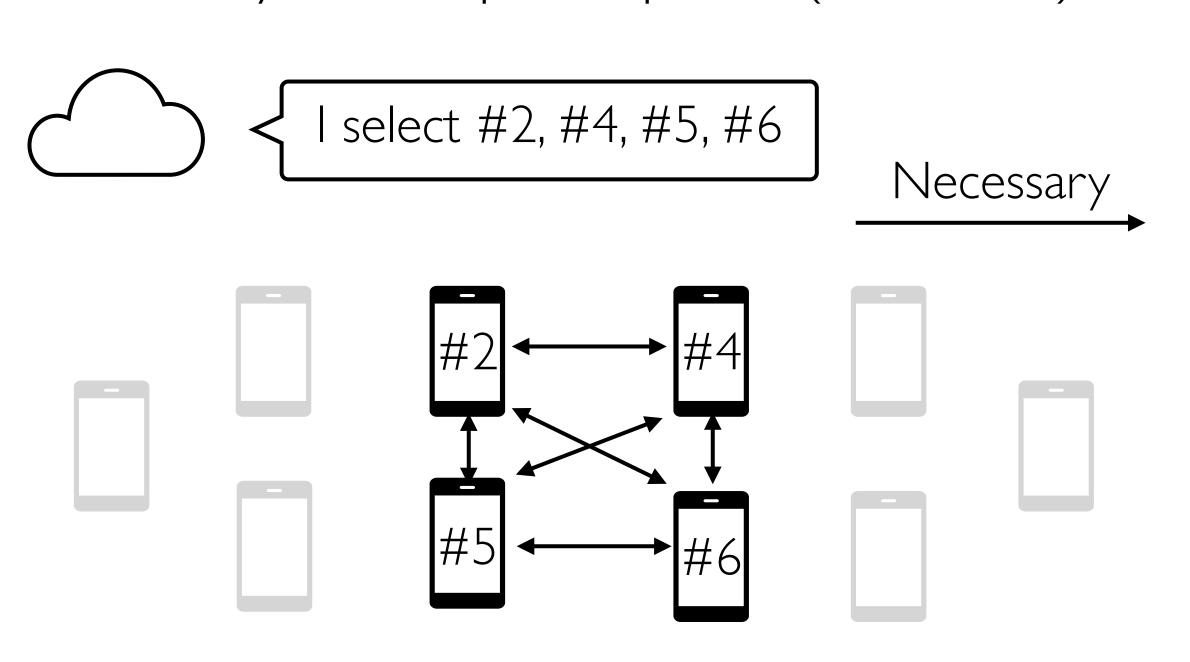


For dishonest majority

Current round: 2 Randomness Randomness Select Select Yes $RF_{pkl}(2) = 9$ No $RF_{pk2}(2) = 1$ No Yes Does NOT matter. $RF_{pk3}(2) = 7$ No No . . . For dishonest majority Selection criteria: <3

Potential approach:

- Mutual verification
- Only within participants (10² 10³)

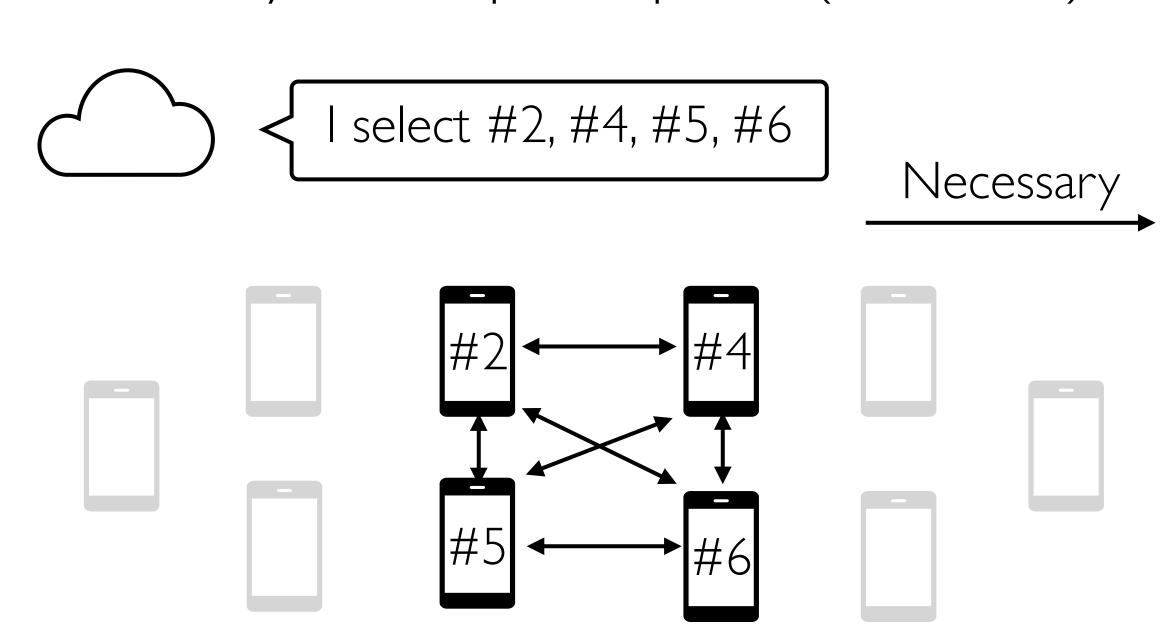


What is achieved:

Each participant sees a list of peers

Potential approach:

- Mutual verification
- Only within participants (10² 10³)

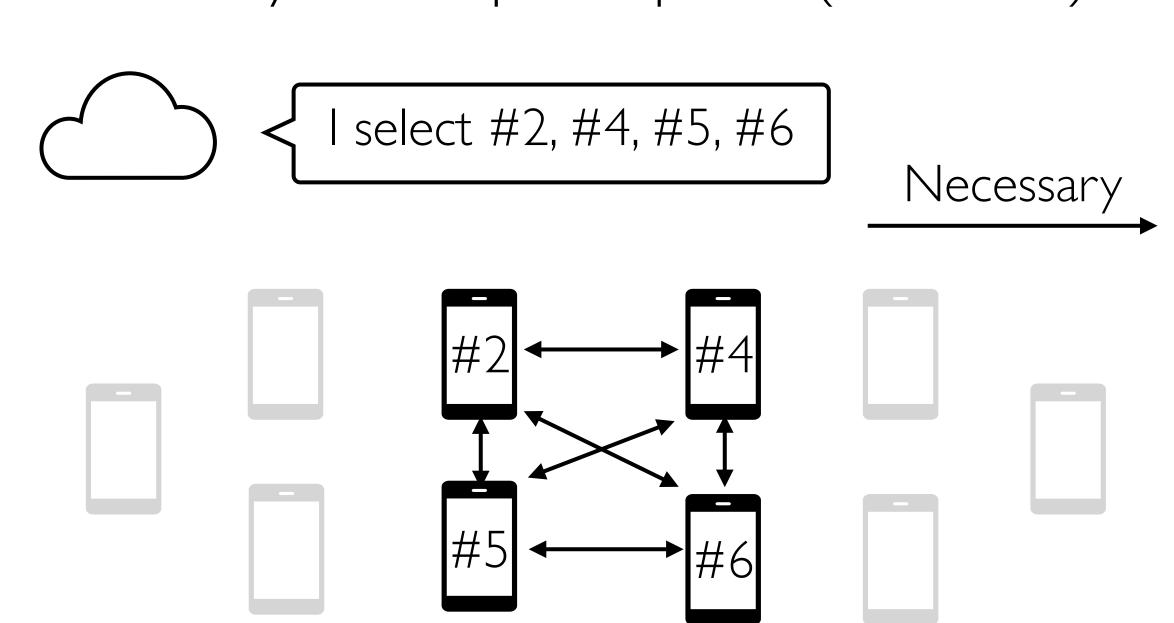


What is achieved:

Each participant sees a list of peers who presents only by chance.

Potential approach:

- Mutual verification
- Only within participants (10² 10³)



What is achieved:

Each participant
sees a list of peers who
presents only by chance.

What happens to the absent?

What is achieved:

Each participant
sees a list of peers who
presents only by chance.

Ignore before selection Ignore after selection

Ignore before selection

Ignore after selection

Problem: The server may arbitrarily

What is achieved:

Each participant sees a list of peers who presents only by chance.

Problem: The server may arbitrarily ignore honest clients Ignore **before** selection Ignore after selection Selected

What is achieved:

Each participant sees a list of peers who presents only by chance.

What happens to the absent?

Solution: Enforce a large enough list and a small enough chance.

What is achieved:

Each participant sees a list of peers who presents only by chance.

What happens to the absent?

Solution: Enforce a large enough list and a small enough chance.

Example

• len(list): ≥ 200

• Chance: ≤ 0.1%

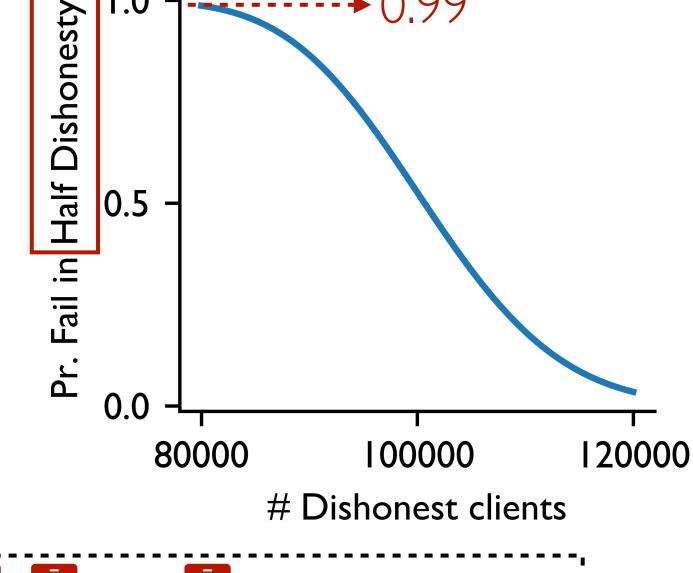
What is achieved:

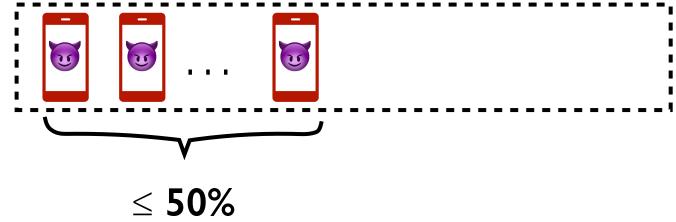
Each participant sees a list of peers who presents only by chance.

What happens to the absent?

Solution: Enforce a large enough list and a small enough chance.

- len(list): ≥ 200
- Chance: ≤ 0.1%





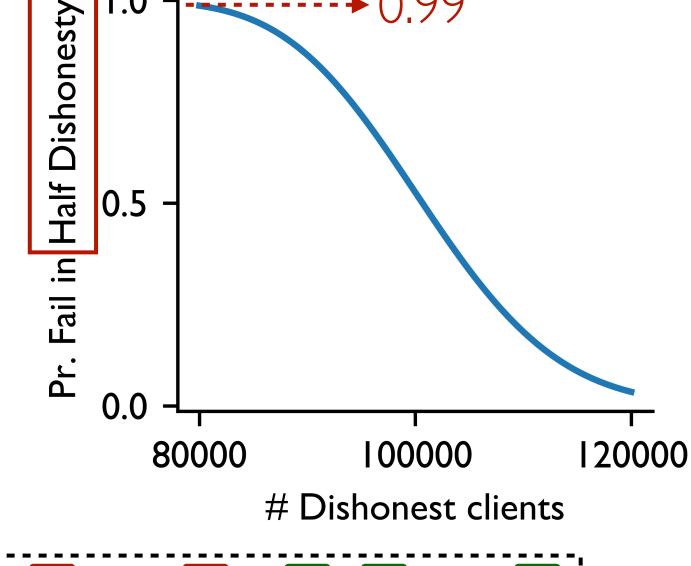
What is achieved:

Each participant sees a list of peers who presents only by chance.

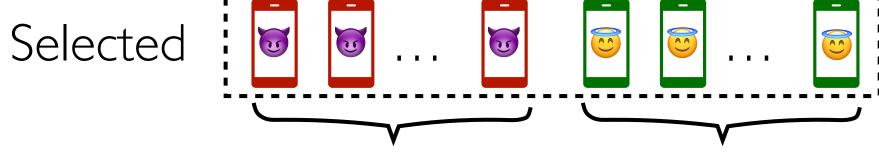
The absent will not get arbitrarily ignored

Solution: Enforce a large enough list and a small enough chance.

- $len(list): \ge 200$
- Chance: ≤ 0.1%



≥ 50%



≤ 50%

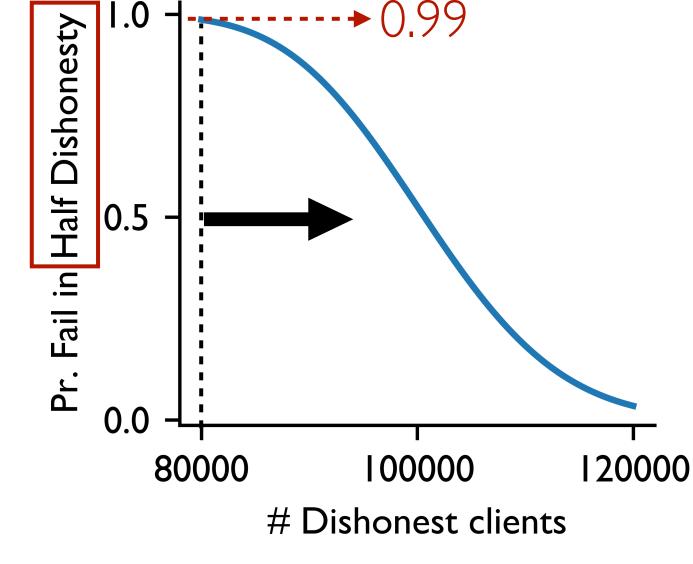
What is achieved:

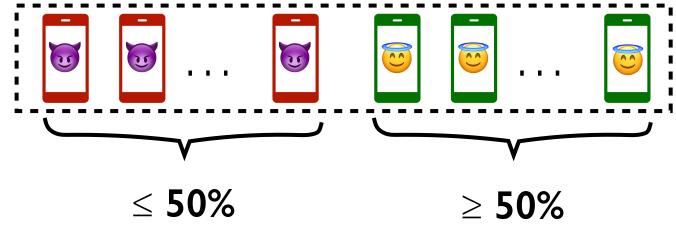
Each participant sees a list of peers who presents only by chance.

The absent will not get arbitrarily ignored

Solution: Enforce a large enough list and a small enough chance.

- $len(list): \ge 200$
- Chance: ≤ 0.1%





What is achieved:

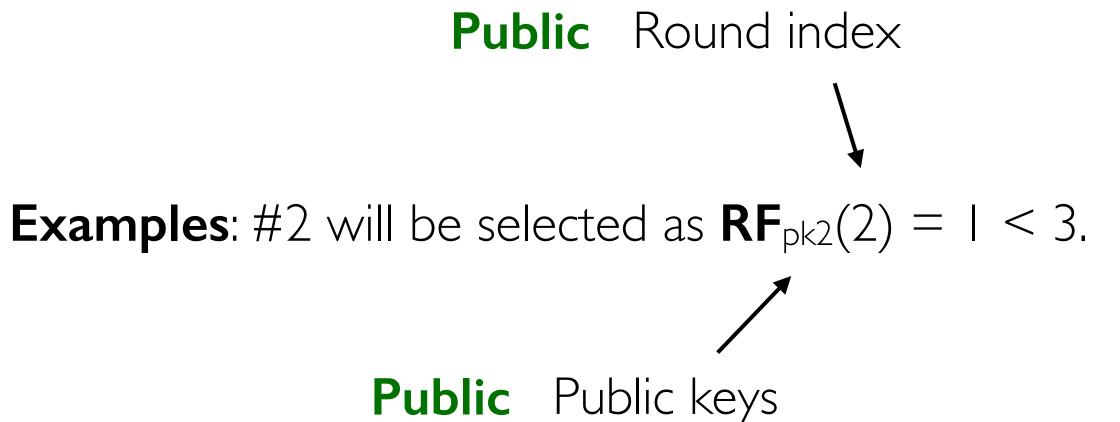
Predictable to server?

Each participant

sees a list of peers who

presents only by chance.

The absent will not get arbitrarily ignored



What is achieved:

Predictable to server?

Each participant

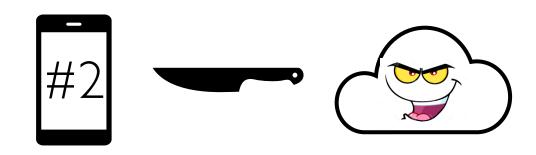
sees a list of peers who

presents only by chance.

The absent will not get arbitrarily ignored

Problem: Attack surfaces enlarged!

Examples: #2 will be selected as $RF_{pk2}(2) = 1 < 3$. Before training, the server may grow its advantage by



Focused hacking

What is achieved:

Predictable to server?

Each participant

sees a list of peers who

presents only by chance.

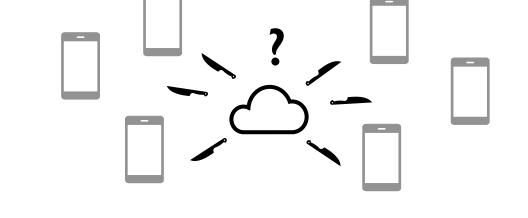
The absent will not get arbitrarily ignored

Problem: Attack surfaces enlarged!

Examples: #2 will be selected as $RF_{pk2}(2) = 1 < 3$.

Before training, the server may grow its advantage by





Focused hacking

Random compromise

What is achieved:

Predictable to server?

Each participant

sees a list of peers who

presents only by chance.

The absent will not get arbitrarily ignored

¹Micali et al. "Verifiable random functions", In FOCS '99
²Dodis et al. "A verifiable random function with short proofs and keys", In PKC '05

Solution: Self-sampling with

verifiable random functions (VRFs)^{1,2}.

Evaluation:
$$VRF.eval_{sk2}(2) = (I,) (output,)$$

Secret key

What is achieved:

Predictable to server?

Each participant

sees a list of peers who

presents only by chance.

The absent will not get arbitrarily ignored

¹Micali et al. "Verifiable random functions", In FOCS '99

²Dodis et al. "A verifiable random function with short proofs and keys", In PKC '05

Solution: Self-sampling with

verifiable random functions (VRFs)^{1,2}.

Evaluation: **VRF.eval**_{sk2}(2) = (1, π_2) (output, **proof**)

What is achieved:

Predictable to server?

Each participant

sees a list of peers who

presents only by chance.

The absent will not get arbitrarily ignored

¹Micali et al. "Verifiable random functions", In FOCS '99
²Dodis et al. "A verifiable random function with short proofs and keys", In PKC '05

Solution: Self-sampling with

verifiable random functions (VRFs)^{1,2}.

Evaluation: **VRF.eval**_{sk2}(2) = (1, π_2) (output, **proof**)

Verification: **VRF.ver**_{pk2}(2, I, $\mathbf{\pi_2}$) = True

Public key

What is achieved:

Unpredictable to server

Each participant

sees a list of peers who

presents only by chance.

The absent will not get arbitrarily ignored

¹Micali et al. "Verifiable random functions", In FOCS '99
²Dodis et al. "A verifiable random function with short proofs and keys", In PKC '05

Solution: Self-sampling with verifiable random functions (VRFs)^{1,2}.

I self-sample with $(1, \pi_2)$

Evaluation: **VRF.eval**_{sk2}(2) = (1, π_2) (output, **proof**)

Verification: **VRF.ver**_{pk2}(2, I, $\mathbf{\pi_2}$) = True

What is achieved:

Unpredictable to server

Each participant

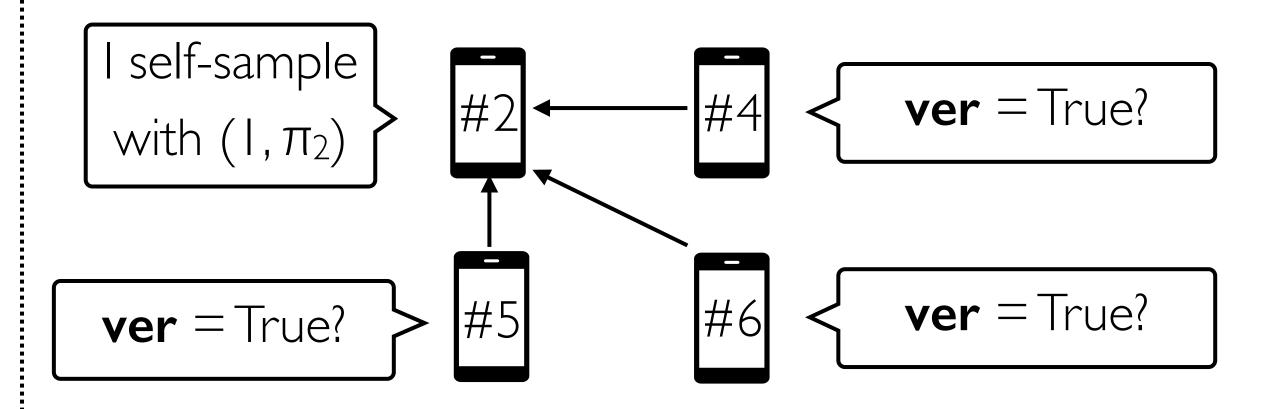
sees a list of peers who

presents only by chance.

The absent will not get arbitrarily ignored

¹Micali et al. "Verifiable random functions", In FOCS '99
²Dodis et al. "A verifiable random function with short proofs and keys", In PKC '05

Solution: Self-sampling with verifiable random functions (VRFs)^{1,2}.



Evaluation: **VRF.eval**_{sk2}(2) = (1, π_2) (output, **proof**)

Verification: **VRF.ver**_{pk2}(2, I, $\mathbf{\pi_2}$) = True

What is achieved:

Unpredictable to server

Each participant

sees a list of peers who

presents only by chance.

The absent will not get arbitrarily ignored

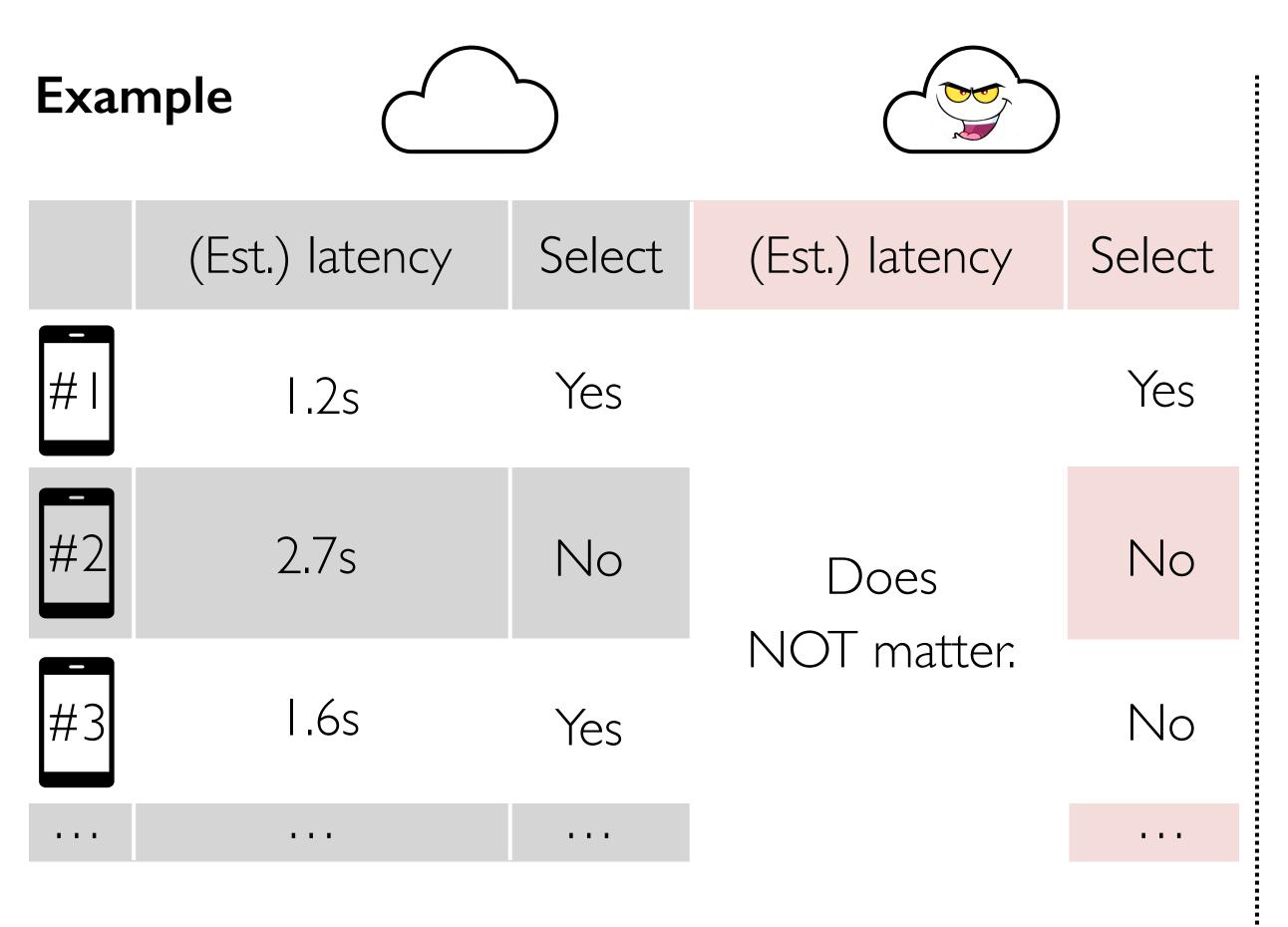
Minor issues:

- Participant consistency: leverage SecAgg
- Fixed sample size: over-selection
- Consistent round index: uniqueness check

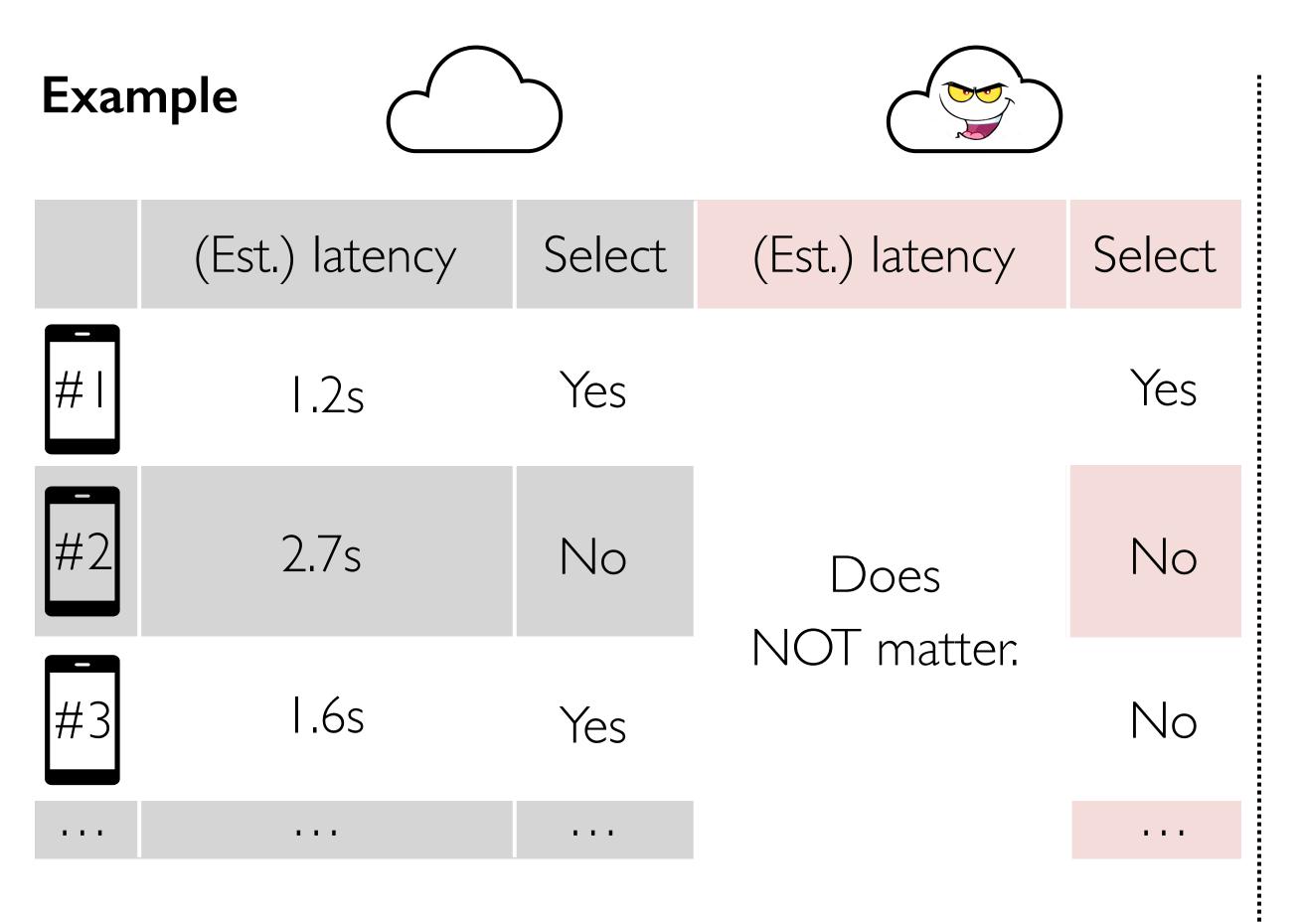
. . .

Please find more in the paper:)

Thus also of distributed DP (other privacy-enhancing techniques may not have this feature and this is left for future work).

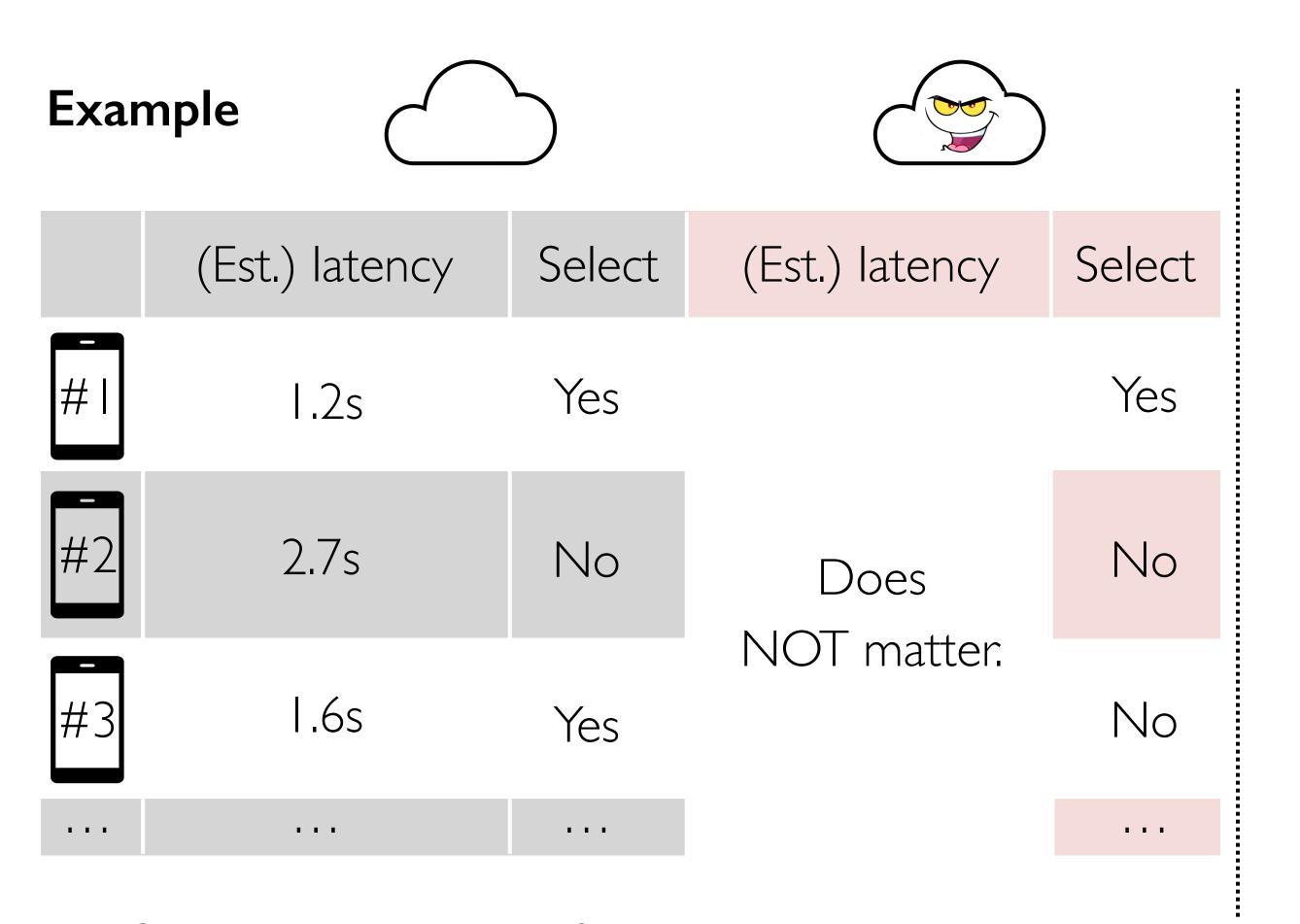


Selection criteria: the fastest For dishonest majority



Selection criteria: the fastest For dishonest majority

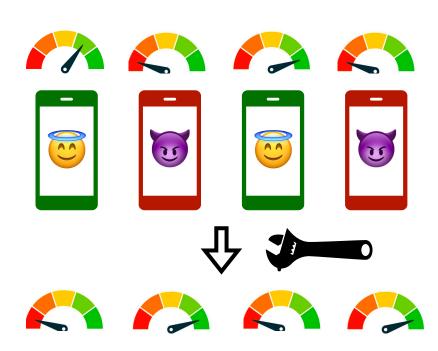
Major Challenge: Client metrics are hard to verify by honest clients

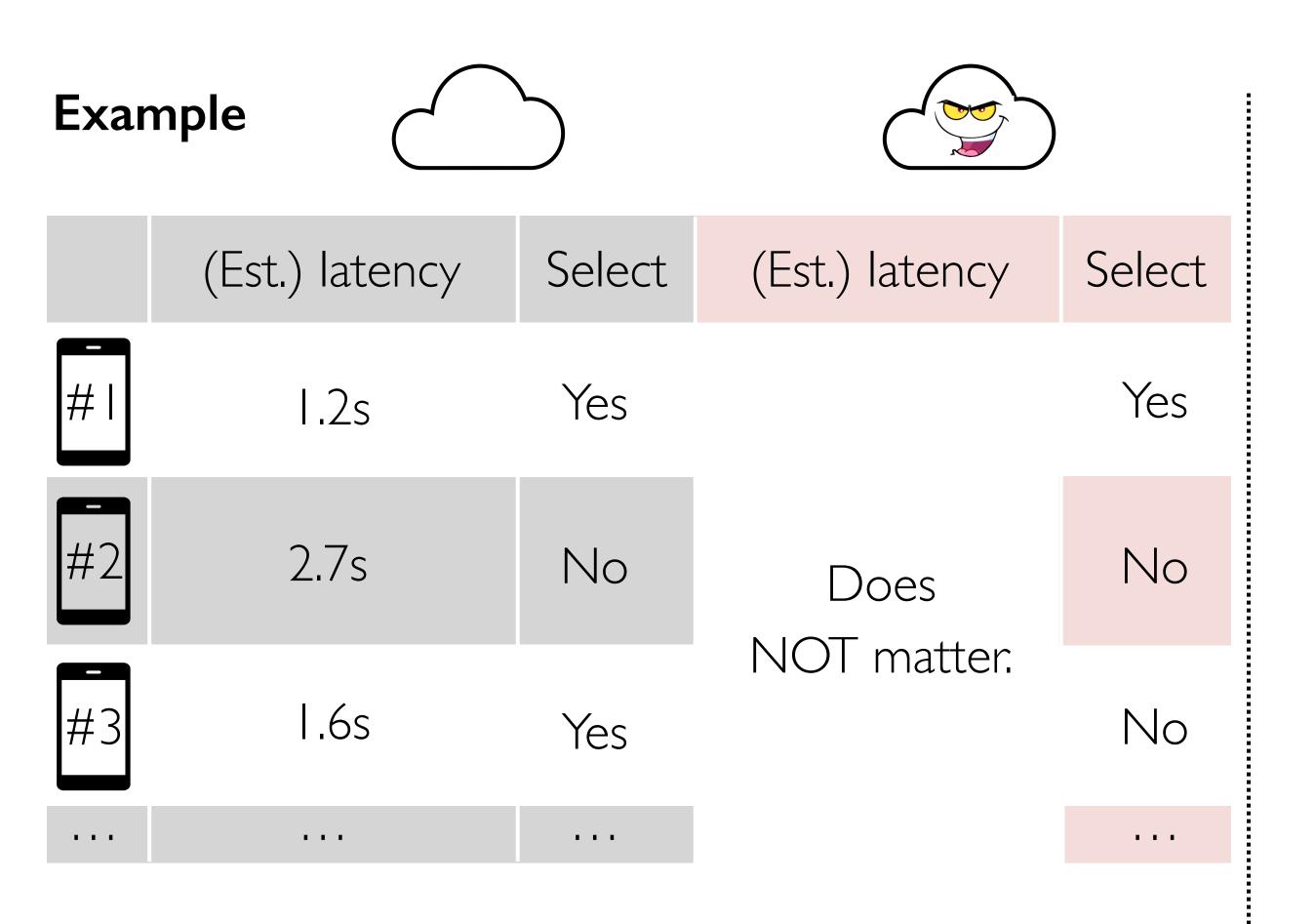


Selection criteria: the fastest For dishonest majority

Major Challenge: Client metrics are hard to verify by honest clients

Metrics can be easily fake

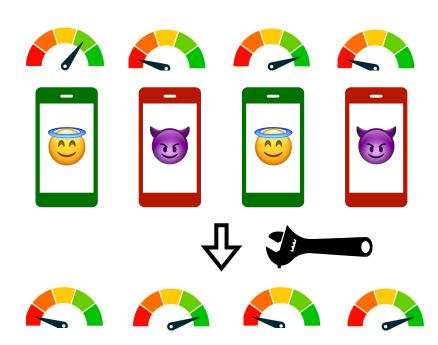




Selection criteria: the fastest For dishonest majority

Major Challenge: Client metrics are hard to verify by honest clients

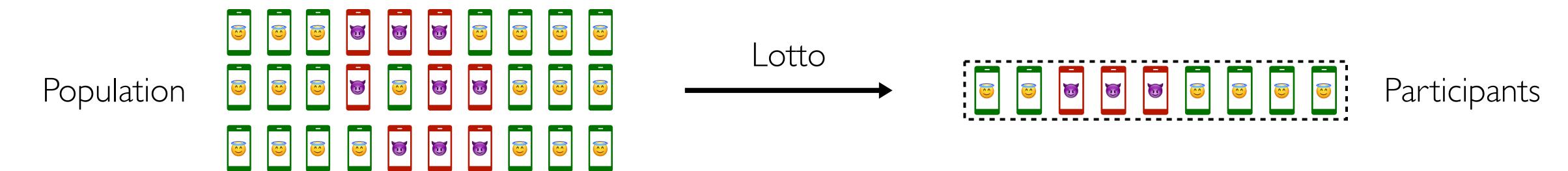
Metrics can be easily fake



Solution: **Approximate** inform selection by **random** selection

Please find more in the paper:)

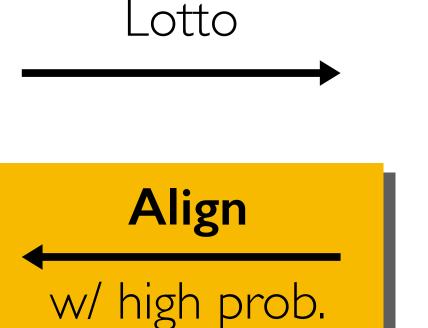
What can be **proven**:

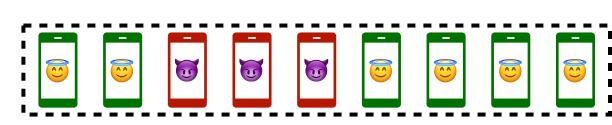


What can be **proven**:

Population

Base rate of dishonest clients





Participants

Fraction of dishonest clients

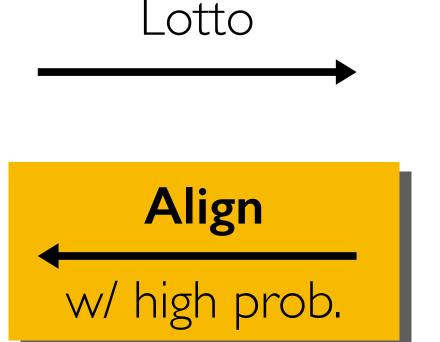
What can be **proven**:

Population

Population

Population

Base rate of dishonest clients



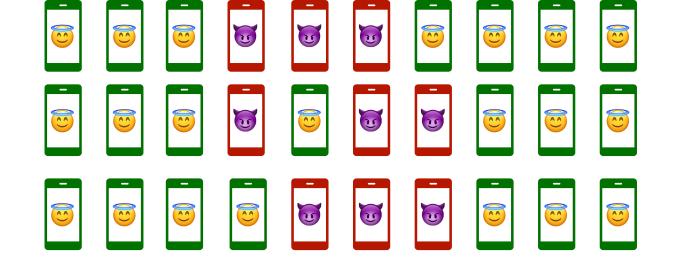
Participants

Fraction of dishonest clients

- **Population**: 200,000
- Dishonesty base rate: 0.005

What can be **proven**:

Population



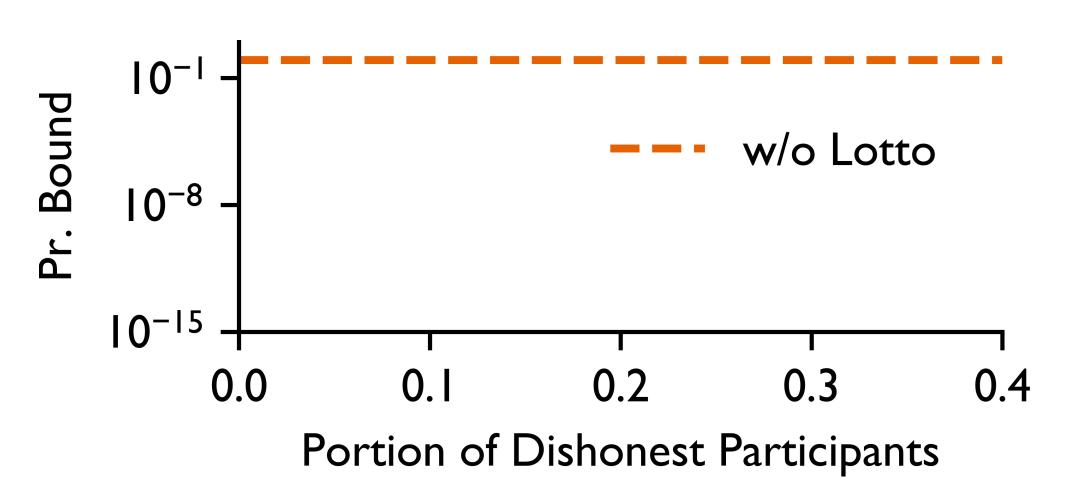
Base rate of dishonest clients

Lotto ----

Participants

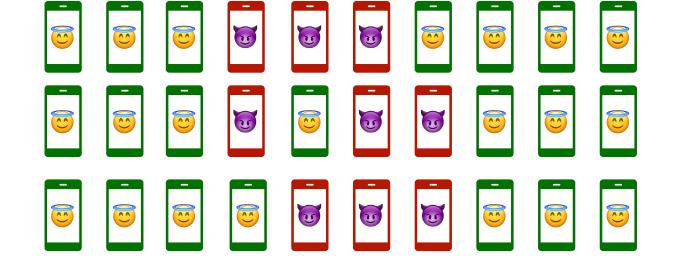
Fraction of dishonest clients

- **Population**: 200,000
- Dishonesty base rate: 0.005
- Target participants: 200



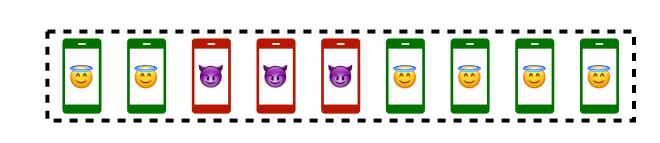
What can be **proven**:

Population



Base rate of dishonest clients

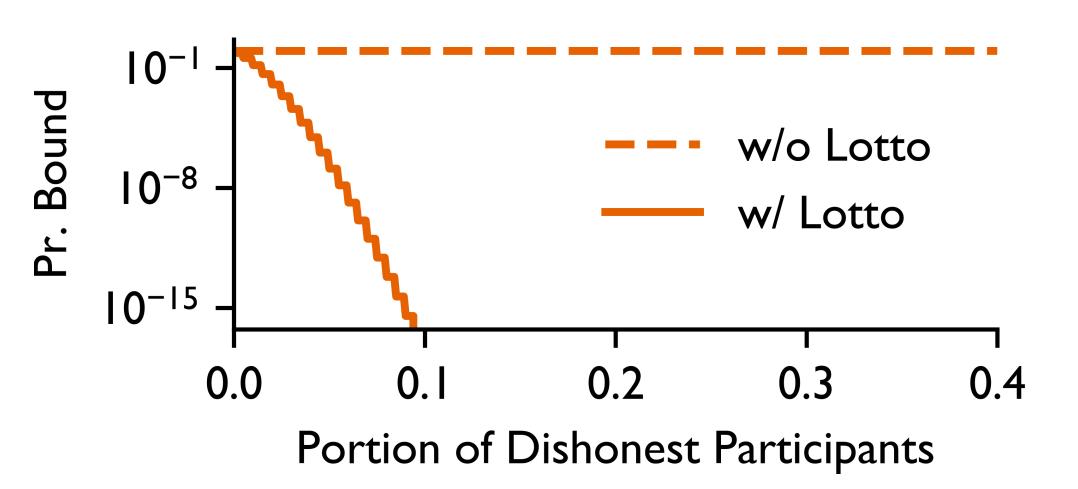
Lotto Δlign



Participants

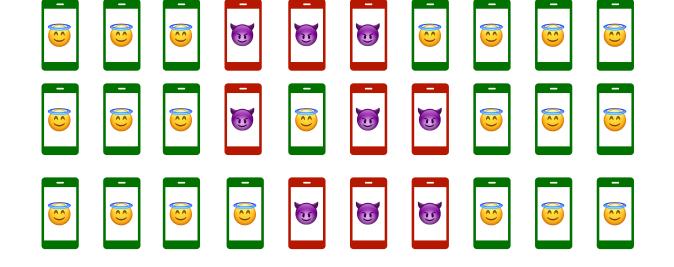
Fraction of dishonest clients

- **Population**: 200,000
- Dishonesty base rate: 0.005
- Target participants: 200

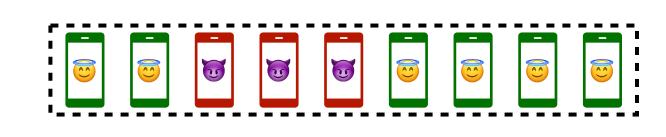


What can be **proven**:

Population



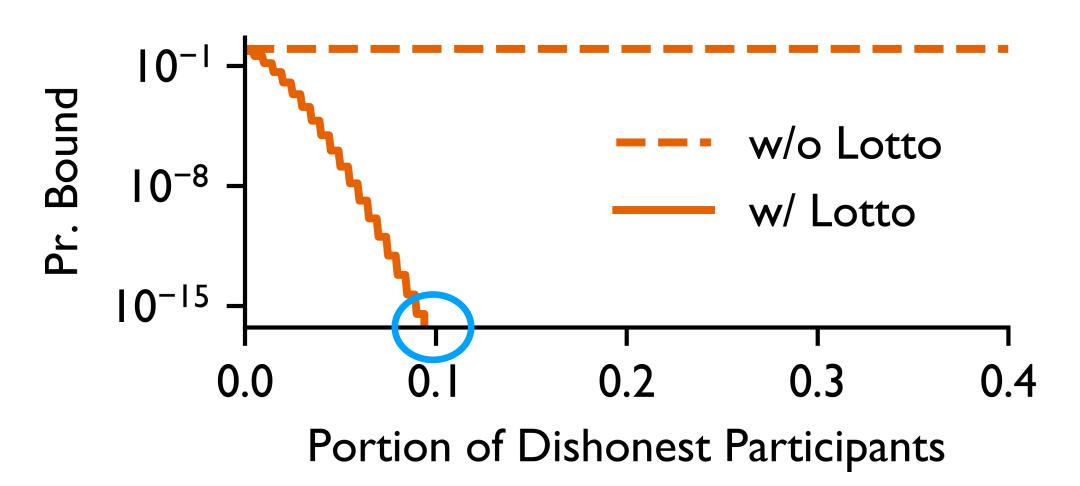
Base rate of dishonest clients

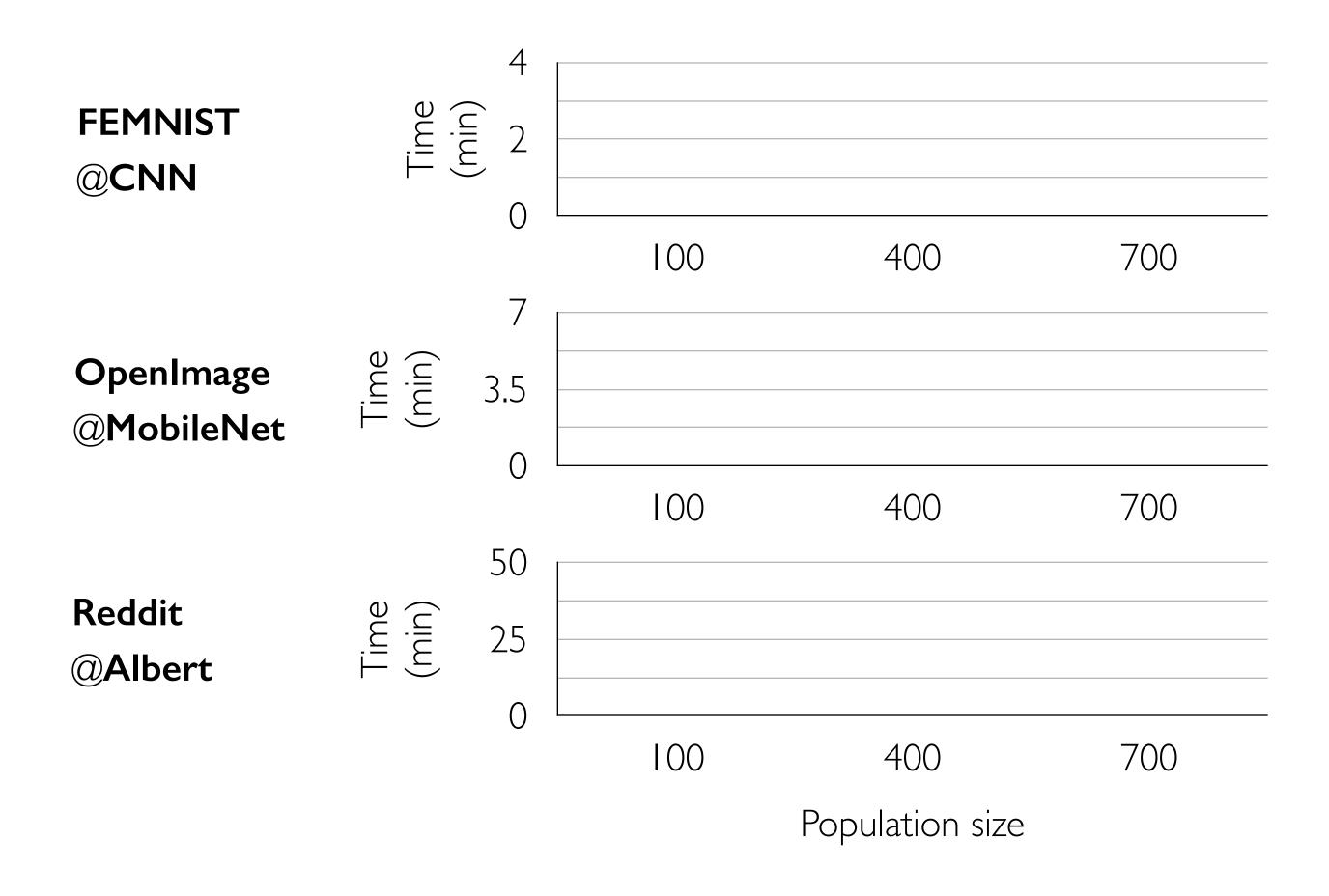


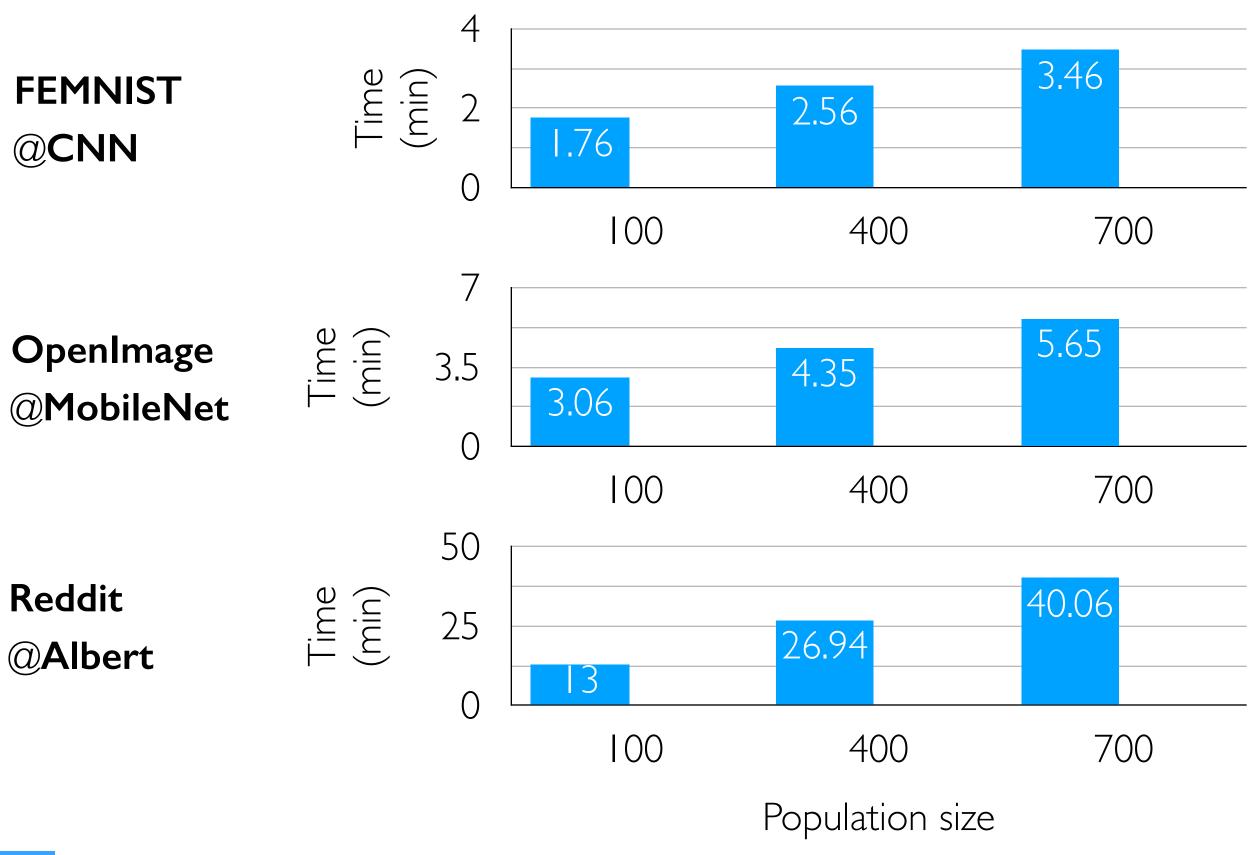
Participants

Fraction of dishonest clients

- **Population**: 200,000
- Dishonesty base rate: 0.005
- Target participants: 200



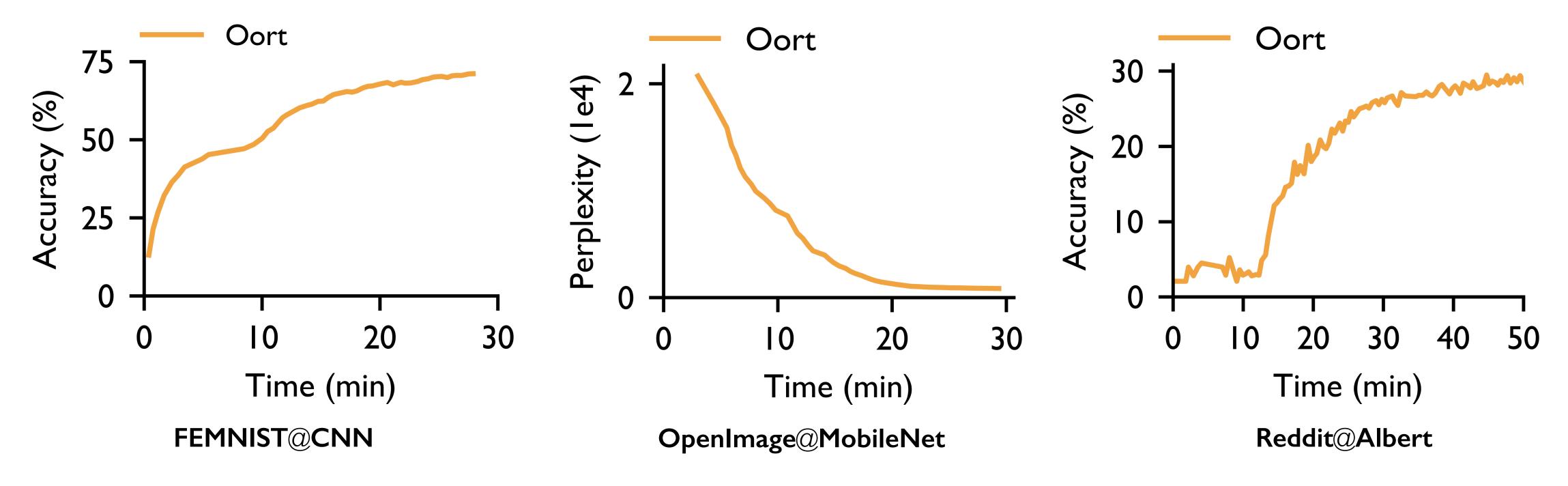




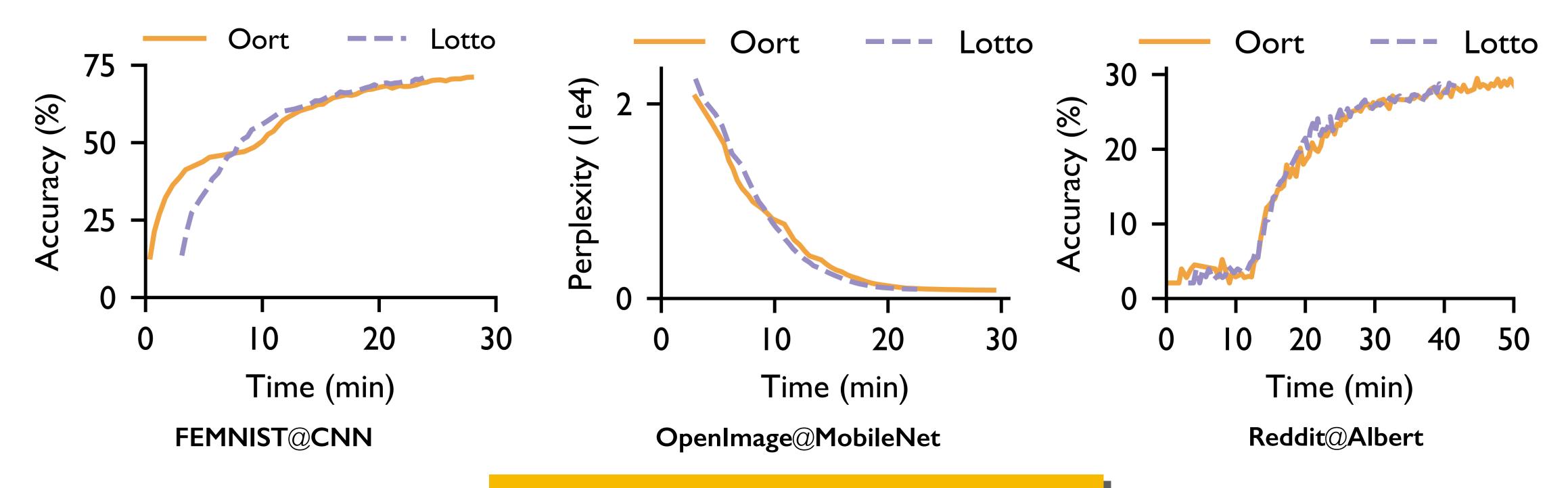
w/o Lotto

Oort → State-of-the-art informed selector: optimized for time-to-accuracy of training

Oort → State-of-the-art informed selector: optimized for time-to-accuracy of training



Oort → State-of-the-art informed selector: optimized for time-to-accuracy of training



Lotto well approximate Oort with no cost in time-to-accuracy performance

Lotto: Results summary

Functionality

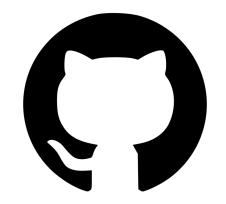
Support both random (exact) and informed (well approximated) selection

Security

Theoretical guarantee (tight probability bound) of preventing manipulation

Efficiency

Mild runtime overhead (≤10%)
with no network cost (<1%)



github.com/SamuelGong/Lotto

Thank you

zjiangaj@connect.ust.hk