CSDrop: Leveraging Context-Sensitive Decoding to
Thwart Return-Oriented Programming

Zhifeng Jiang®

Abstract

The widespread deployment of Data Execution Prevention in
modern processors and operating systems has made code in-
Jjection attacks significantly harder. In recent years, attackers
have resorted to Return-Oriented Programming (ROP), a class
of memory corruptions that enables malicious computation
without injecting any malicious code. ROP is proven to be
Turing-complete for multiple Instruction Set Architectures,
threatening a wide range of applications.

While existing defense efforts mainly focus on thwarting
ROP in the software level, e.g., code instrumentation and
system enhancement, this work aims to eliminate the threat
with microarchitecture modification by proposing CSDrop, a
CPU plugin that enables context-sensitive decoding for se-
curely backing up and validating return addresses. We have
implemented CSDrop in the gem5 simulator, atop which ROP
attacks are first issued by the RIPE attack suite to verify the
defense capability. We then conduct a comprehensive evalu-
ation with programs from SPEC CPU 2006 to show that the
performance overhead is negligible (~0.6%). Finally, we dis-
cuss the practicality of such a method, as well as anticipating
potential future works.

1 Introduction

Despite decades of research, buffer overflow vulnerabilities
still form a major chunk of the security loopholes that plague
the Internet as of today [2, 6]. Essentially, a buffer overflow
occurs when a out-of-bound pointer is used to access data in
the address space adjacent to the original buffer allocated on
the stack or the heap [40]. An evasive direction of exploiting
such vulnerabilities is called return-oriented programming
(ROP) [37], which utilizes buffer overflow to overwrite return
addresses stored on the stack, in a way that the control flow
is ultimately subverted to a chain of existing code snippets
(called gadgets) for conducting some attack logic. ROP is
Turning-complete on a wide variety of platforms [8, 24, 37],
threatening the security of an overwhelming amount of sys-
tems and applications written in languages that inherently
lack bounds checking, such as C/C++.

To thwart such an attack, existing software-based efforts
mainly advocate two lines of defense mechanisms. One is
to maintain the control flow integrity (CFI) by systematically
verifying branch targets at runtime [25, 27, 28, 43, 46, 47].
This requires the recompilation of source code and could lead
to incompatibility issues when securing code-on-the-shelf

“Work done as an intern at University of California, San Diego.

(COTS) binaries. Also, the trade-off between performance and
security is tricky to navigate. In solutions where reasonable
runtime overhead can be achieved, the enforcement of CFI
is relatively weak and thus numerous attacks are feasible
[9, 16-18].

Another direction is to proactively invalidate the prior
knowledge that is necessary to launch an attack. To that end,
a defender can randomize the memory layout in different
granularity so that the gadget locations are not deterministic
[23, 32, 33], or recompile her programs in a way that the
exploitable gadgets are eliminated mostly [26, 29]. Again, for
the latter case, recompilation can cause significant concerns
on the portability, while for the former case, the system is
still vulnerable to just-in-time (JIT) attacks [4, 38, 39] due to
the static nature of the memory layout at runtime.

In this paper, we envisage the opportunity of devising a
more desirable defense on the hardware technique of context-
sensitive decoding (CSD) [42]. Basically, CSD works on the
decode stages in the instruction pipeline, and it enables cus-
tomizable native-to-microop translation in adherence to the
dynamically changeable context such as hardware events or
register updates. Leveraging the transparent nature of CSD
as to attackers, we propose to customize the translation of
call/ret instructions in a way that return addresses can be
verified before being used, with copies that are previously
stored within a well-protected region in virtual memory
space, called a shadow stack.

While there already exists software ways to implement a
similar idea [12, 31, 34], we aim to be distinct from them by
simultaneously tackling three challenges. First, we need to
safeguard the content in the shadow stack (Security). While it
is infeasible for software-based methods to achieve this due
to their agnostic to the lower-level system and hardware, we
propose to perform strict access control on the shadow stack
by only allowing a narrow range of micro-ops to modify the
shadow stack (§ 5). Second, we need to accommodate excep-
tional scenarios where non-local returns are performed and
the LIFO nature of shadow stack becomes invalid (Function-
ality). To that end, apart from bookkeeping return addresses,
we advocate jointly storing the associated stack pointers for
differentiating a software exception and an actual attack (§ 6).
Last but not least, a practical defense is desired to exhibit
near-to-optimal runtime overhead. To satisfy this require-
ment, on decoding return instructions, we delay the access to
the shadow stack and refer to return address stack (RAS) first,
a high-speed on-chip unit that possesses similar behaviors
as the shadow stack (§ 7).

The whole proposal is termed CSDrop and is integrated
into the gem5 simulator. To showcase its effectiveness in
thwarting ROP, we craft multiple ROP instances and launch
them with the aid of the RIPE attack suite [44]. We compare
the attack outcomes with and without CSDrop and the results
prove that CSDrop fulfills the security requirement. We have
also demonstrated the correctness of how CSDrop deals with
exceptional semantics brought by setjmp/longjmp function
calls. We finally test the runtime overhead of CSDrop with 16
CPU-intensive benchmark programs from SPEC CPU 2006
[22]. Results show that when RAS is utilized, the average
overhead that CSDrop brings to the execution of protected
programs is negligible (0.76% on average). To our knowledge,
CSDrop is the first implementation of shadow stacks that
tackle the three aforementioned challenges in the meantime.

2 Background and Motivation
2.1 Return-Oriented Programming

A buffer overflow is a software bug that occurs when data
that are stored adjacent to the end of an allocated array are
corrupted due to a lack of bounds checking. Gaining noto-
riety since 1988 [40], buffer overflow vulnerabilities have
long been one of the major security loopholes that plague
the Internet, and it still ranks second in China National Vul-
nerability Database [2] today, just behind cross site scripting.
These vulnerabilities have been systematically exploited by
code reuse attacks, wherein return-oriented programming
(ROP) [37] has been one of the most general and flexible
schemes. A ROP attack can subvert control flow with the
aid of existing code gadgets in memory image, instead of any
injected code. Figure 1 exemplifies how a ROP attack that
mounts on x86 executables can spawn a command shell.
The demo attack begins with injecting an carefully crafted
payload (shaded area on the stack), which leverages buffer
overflow when providing input to the buf array in callee().
In particular, the return address of callee() is overwritten
with the address of a short code snippet (D in the program
that ends with an return instruction (ret), called gadget
by convention. Recall that what the CPU does when the
instruction pointer reaches a return instruction is to (1) pop
what the stack pointer currently refers to and (2) have the
instruction pointer updated to that address. Upon executing
the return instruction of callee(), instead of returning to
its caller function as expected, the control flow is actually
hijacked to gadget (). Once the gadget has executed, the
value of the eax register will be set to @xb, and the exploits
continue with gadgets @), 3), and (@. As a consequence,
the necesary context of trapping into kernel and opening a
command shell progressively get prepared, with which the
attack can evolve into a more general and powerful one.
Note that the gadgets that ROP utilizes are not intention-
ally placed by victim programmers. Instead, they are so short
in size and common in function that they can be widely found

Cosizt ... (High) ...
Pointer to overwritten area A
- — “/sh\0”
Pointer to existing gadgets
o “/bin”
Existing gadgets elsewhere
> 0x0
@| int0x80 | [n
&
e
=
o
pop Yeecx S
pop %ebx =
ret Q
€
® pop %edx g
ret @
8
0xb o
pop %eax R 2
@ i (orig. callee’s ret addr.)
caller’s frame pointer
callee’s
buf [4:8
stack frame { [4:8]
buf [0:4]
void callee() {
char buf[8]; ... (Low) ...
scanf (“%s”, buf);

//...

Figure 1. Possible form of return-oriented programming.

in general-purpose libraries of all kinds that most of C/C++
programs and drivers have to lean on, such as libc. It has
been shown by extensive studies how to easily identify a
Turing complete set of gadgets on different instruction set
architectures including but not limited to x86 [37], ARM [24]
and SPARC [8]. We also showcase the feasibility of conduct-
ing the above demo attack in our experimental environment
later in Section 9.2. It is also noteworthy that so far, several
evasive variants of ROP have been proposed such as Jump-
Oriented Programming (JOP) [5, 11], Call-precede ROP [10],
and Sigreturn-Oriented Programming (SROP) [7], whereas
in this paper we focus on the defense against ROP.

2.2 Limitations of Software Defense

Existing software attempts to defend against ROP can be
broadly classified into two categories of works.

Integrity Protection Intuitively, ROP can be thwarted by
enforcing the integrity of return addresses stored in the stack.
Early defenses have explored such a possibility by proposing
shadow stacks, where software is re-compiled to addition-
ally store copies of return addresses in a protected memory
area at runtime for validation use [12, 31, 34]. To provide
wider protection, Abadi, et al. first formalized the idea of
control flow integrity (CFI), where the execution of a pro-
gram is constrained in a predefined control flow graph by

systematically checking target addresses of branches, jumps,
calls, and returns [27]. Since then, there have been exten-
sive follow-up works on CFI at different levels of granularity
[25, 28, 43, 46, 47]. A practical issue of this line of works is
the tricky trade-off between performance degradation and
security guarantee. Implementing CFI statically can reap the
most benefits of online overhead but leave the attack surface
the largest due to the ignorance of the runtime dynamics,
whilst enforcing CPI dynamically behaves in the opposite
way [15]. Moreover, in the literature several backdoor at-
tacks [9, 16—18] are shown to be possible to bypass these
techniques, calling for a stricter enforcement of CFL

Knowledge Invalidation The other direction of defend-
ing against ROP takes effect in a more aggressive manner by
invalidating the a priori knowledge that a successful attack
relies on. A major approach in this scope is address space
layout randomization, whereby the memory layout of a pro-
gram is stochastically determined to harden the utilization
of gadgets. This can work in different levels of granularity in-
cluding memory segment [33], code block [23], as well as in-
struction [32], with external help from the operating system
and/or compilers. Due to the limited randomization entropy
and intrinsic static nature, however, these works cannot pro-
vide foolproof security and are vulnerable to brute-force or
just-in-time (JIT) attacks [4, 38, 39]. Apart from perturbing
the locations of gadgets, another trial in this line of works
advocates proactively eliminating gadgets upon program
compilation [26, 29]. Such a method demands the presence
of the source code of both a program and its dependent li-
braries, which makes it less appealing in practice, especially
when only code-on-the-shelf (COTS) binaries are available.
Summary Table 1 summarizes the limitations of the above
mentioned strategies, which implies that software-only solu-
tions may not be the optimal. This fact drives us to explore
the possibility of hardware solutions, which are not only
orthogonal to the previous software-based attempts, but also
has the potential to strike a new balance between the listed
dimensions. In this paper, we aim to devise one of such pos-
sibilites with the following requirements born in mind:

1. Security (R1): effective in thwarting ROP.

2. Functionality (R2): letting the code work as usual.

3. Performance (R3): close-to-optimal runtime overhead.

4. Portability (R4): feasible for unmodified code.

3 Assumptions and Threat Model

Existence of Buffer Overflow We do not need program-
mers to change their habits or reframe their applications
such that buffer overflow bugs are eliminated. Instead, a
buffer overflow can still occur.

Complete Disclosure We assume that the attacker has
full knowledge of our defense mechanism. We also assume
that the attacker has unfettered access to the binary, source
code, and the program in execution, meaning that she has

Table 1. The goal of our hardware solution and the status
of the counterparts, where Q80 represent best to least
adherence to the property in the row, respectively.

Crl AstR CR9ECt o aoal
elimination
Security S O @ @
Portability S ® O @
Performance & @ @)

a complete list of all potential ROP gadgets in the memory
image, with which she is capable of launching a ROP attack
if no security is enforced.

No Complementary Method We require no additional
software-based techniques to defeat ROP, including CPI,
ASLR, and attempts that try to reduce usable gadgets in
a program as mentioned above, since CSDrop is orthogonal
to most existing software mechanisms.

Hardware Integrity The attacker may have access to our
instrumented CPU, cache and memory, and may be able to
probe any data or access patterns through side channels of
all kinds. However, we do not tolerate the destruction or
modification that is performed on the hardware.

4 CSDrop Overview

CSDrop disables return-oriented programming by customiz-
ing the behaviors of return instructions. In this section, we
provide an overview of how this can be achieved in modern
CPUs. Without loss of generality, we base our design on the
x86 in what follows.

4.1 Context-Sensitive Decoding

For simplifying CPU design and improve instruction-level
parallelism, CISC ISAs such as x86 and ARM typically trans-
late native instructions, called macro-ops, into their respec-
tive RISC-like instuctions, called micro-ops (u-ops) [21, 36].
For example, as mentioned in Section 2.1, the return instruc-
tion (ret) may correspond to three p-ops: 1d t1, %esp;
addi %esp, %esp, dsz; weip t1!l. The set of these y-ops
is statically predefined in y-ops ROM on chip, and it is the
decode stage of the processor pipeline that takes charge of
the translation at runtime [19].

To harness the untapped potential of the decoder, Context-
Sensitive Decoding (CSD) has been proposed to enable cus-
tomization of the micro-op translation at the microsecond
fine granularity [42]. Figure 2 illustrates the major idea of
CSD. When CSD is turned on, the fetched instruction ((1))
will be redirected to the custom decoder, which decodes it
not only based on the micro-op program counter (¢PC), but

!What they essentially mean is to pop the content pointed by %esp to %eip
in three steps.

also the current context (ctx), i.e., the index of rules that
specify how to perform the native-to-microcode translation
(). Finally, besides PC, pPC is also updated upon comple-
tion of decoding according to branch prediction results to
accommodate speculative execution ((3)).

%eip (PC)—>| icache

o

microop | o (_macroop)
ctx=0 :

~

— 5
microo
o
. ;| cache
- o | f
N
ctx=3 | uPC:4 — 5
: 4 ®

- 5
microop » ©

Figure 2. Context-Sensitive Decoding.

It is worth mentioning that such a technique does not come
with significant hardware modification. The customization
of micro-ops can be achieved by the exploitation of the well-
established microcode update procedure outlined by Intel
[21]. As for the context switch, it can be triggered by changes
on the model-specific registers (MSRs). This means that pro-
grammers can switch on a particular context by requesting
the operating system to properly set MSRs.

4.2 CSDrop Overview

At its core, CSDrop is an instantiation of CSD that allows
return address validation for defending against ROP. Essen-
tially, by customizing the decoding logic, we make the pro-
cessor additionally store a copy of the return address upon
the execution of a function call in a protected area, named
shadow stack, and also make it load and validate the return
address on the stack using the saved copy upon returning
from that function. Figure 4 provides a sketch of the high-
level idea of CSDrop. (1) When the instruction counter of the
current function caller reaches the place where function
(callee) is called via call, additional micro-ops are added
upon the decode stage to store the return address in the
shadow stack. (2) After that, the call’s original sequence of
micro-ops is executed, which stores the return address in the
user stack and jumps to the beginning of callee. 3) When
it comes to the exit from callee, again, auxiliary micro-ops
are added to verify the equivalence between the return ad-
dress stored in the user stack and the one in the shadow
stack. @ It is only when verification passes can the control
flow return to caller.

Caller’s inst.

Caller’s inst.
o 0
microops
N ®
call /A
Return la— ret
address
, @
1
"
b D
i User stack E Shadow stack
| i
1 1
| i
'@ g B ;)
-=Zp L - -
®

What CSDrop adds — Control flow ---» Data flow

Figure 3. Idea sketch of CSDrop.

Note that as we have mentioned in Section 2.2, the idea
of shadow stack has long been explored in the literature of
software-based mechanisms. They implement the idea ba-
sically by inserting shadow-stack-related instructions into
the source code or binary of an application. However, these
methods failed to satisfy the aforementioned R1-R4 simul-
taneously.

1. Security (R1): Working only on the application code,
the trusted computing base (TCB) of software meth-
ods is large. More precisely, they can by no means
ensure the integrity of their shadow stacks against
other corrupted applications or the operating system.
With sutble hardware change, we show how we man-
age to perform foolproof access control on the shadow
stack in Section 5.

2. Functionality (R2): Few software-based proposals study
the handling solution to exceptional instruction se-
quences where call and return instructions do not
match, such as the ones generated by setjmp/longjmp
from the standard C library. We provide our amending
solution on such corner cases in Section 6.

3. Performance (R3): While software-based shadow stack
solutions introduce extra instructions and thus induce
sub-optimal performance cost, our hardware-based
solution induces computation overhead more mildly.
Moreover, we manage to further optimize the runtime
overhead with the aid of the on-chip return address
stack. We elaborate more on our performance opti-
mization strategy in Section 7.

4. Portability (R4): Some of the software-based methods
demand the availability of source code for successful
instrumentation, while our hardware-based method is
naturally agnostic to the code running above.

5 Access Control of the Shadow Stack

The security of CSDrop is rooted in the integrity of the
shadow stack. In this section, we elaborate on details of its
access control of the shadow stack in response to R1.

Basic Configurations While the shadow stack can be im-
plemented in either the physical memory or another special-
ized one, we opt to the use of physical memory for minimizing
the need for modifying the underlying hardware (R4), as
well as avoiding the potential runtime overhead induced
by re/storing the shadow stack upon context switch? (R3).
Specifically, when a process starts, apart from the user stack,
the operating system also maps a shadow stack to its virtual
memory space. The shadow stack is designed to have the
same length as the user stack does to avoid overflow?, i.e.,
8MB on the x86-64. Note that we do not allocate such a large
chunk of memory immediately. Like the user stack, the oc-
cupation of the shadow stack is incremented page by page
on-demand in physical memory.

Protection by TLB Similar to the access to the user stack,
we manage the shadow stack via its own stack pointer, which
records the top position in the stack. We also maintain a
frame pointer for the shadow stack which points to the bot-
tom for emptiness detection (this is necessary for the excep-
tional scenarios mentioned in Section 6). Both of the two
pointers are transparent to any programmer for two rea-
sons: (1) the reference to them merely exists in the level of
micro-ops which a programmer cannot directly devise; (2) as
other logical registers, they are exclusively mapped to some
physical registers by the processor.

Given the safeguarded stack pointer and frame pointer, we
can identify the up-to-date range of the shadow stack in vir-
tual memory space. To control the access to the whole range,
we make a subtle modification on the translation lookaside
buffer (TLB), which now assists in address validation with
the knowledge of shadow stack range. More precisely, only
the micro-ops generated from call/ret under the intended
context can refer to that range of space. Other micro-ops, e.g.,
the ones generated from a malicious mov, will be rejected
on reading from or writing to that range with a hardware
exception thrown to alert the application user. Note that
there are still ways to probe the content within the range
of shadow stack like performing cache-based side-channel
attacks [20, 30, 45]. However, ROP attackers can still not able
to bypass CSDrop as long as they are not permitted to modify
the content in adherence to their choice. To conclude, the
integrity of the shadow stack can be guaranteed in CSDrop.

20therwise, when the process switches to execute another process, the
shadow stack of the current process in the specialized memory, if not
sufficiently large, has to be securely stored in the main memory, e.g., with
encryption involved, which is foreseeably time-consuming.

3In this case, the user stack will be exhausted earlier than the shadow stack
be, as it contains not only return addresses but also many other context
information and program data.

6 Handling Exceptional Semantics

To ensure the robustness of CSDrop as required by R2, we
first ask the question:

e Is a mismatch between the return address in the user
stack and that in the shadow stack a necessity and
sufficiency of identifying a ROP attack?

According to our observation, the answer is negative and
the mismatch is only a necessary condition for confirming
ROP. The reason for this lies in an exceptional scenario where
a function may not return to its caller at all. In this case, a
mismatch can be triggered when the shadow stack is in use,
though, it is not related to a launched ROP attack.
setjmp/longjmp In C, such a special scenario is mostly
entered when a program or its dependent libraries calls
setjmp/longjmp functions. Basically, setjmp() stores the
context information of the current execution point to a buffer,
while longjmp() causes that environment to be restored.
This allows a program to quickly return to a previous loca-
tion, without going through the chain of return addresses in
between® [11, 44]. To further illustrate, we give a minimum
example of the use of setjmp/longjmp as well as how a mis-
match situation is resulted in Figure 4, along with Figure 5.
We also simulate the execution step by step as follows.

1. first() calls setjmp() which saves the current con-
text, including all the values in general-purpose reg-
isters and the return addresses in first(), into an
predefined global buffer buf (Line 19). Figure 5a shows
the status of both the user stack and the shadow stack
before setjmp() returns. As for the return value, by
design, if setjmp() is called the first time, it is 0, and
thus second() will be called (Line 21).

2. As second() and third() are executed in turn, it
ends up with the calling of longjmp() (Line 7). What
the longjmp() does include: (1) reload the general-
purpose registers with the corresponding values stored
in buf’; (2) change the return value (which is stored in a
specific register like %rax in the x86-64) to a non-zero
value® (1 in this example); and (3) use unconditional
branch instruction jmp to return to the address that has
been previously stored in buf. As a result, it will look
as if the program returns from setjmp() to first()
as it previously did with all the context remains the
same, except for the return value. The status of the two
stacks before and after longjmp () returns are depicted
in Figure 5b and Figure 5c, respectively.

As Figure 5c shows, after returning from longjmp(), the
sequence of return addresses stored in the shadow stack will
become inconsistent with that in the user stack. Should it be
recognized as an appearance of ROP, the innocent control

“This is basically why setjmp/longjmp are named so.

5 As a result, after returning to first(), the processor can carry on execut-
ing auxiliary(), instead of trapping in the dead loop of first-second-
third-longjmp—first.

1

#include <stdio.h>

» #include <setjmp.h>

static jmp_buf buf;

void third() {
printf("third\n");
longjmp (buf, 1);
printf("impossible to get here\n");

void second() {
printf ("second\n");
third();
printf("impossible to get here\n");

7 void first() {

printf("first\n");

if (!'setjmp(buf)) {
printf("if\n");
second();

} else
printf("else\n");

auxiliary();

7 void main() {

printf("main\n");

first();

printf("back to main\n");
}

Figure 4. A toy code example that uses setjmp/longjmp,
where auxiliary() can be arbitrarily complex and we thus
omit its definition.

longjmp’s frame

longjmp’s ret. addr.

third’s frame

third’s ret. addr.

setjmp’s frame

setjmp’s ret. addr.

second’s frame

second’s ret. addr.

first’s frame

first's ret. addr.

first’s frame

first's ret. addr.

User stack

Shadow stack

User stack

Shadow stack

(a) Right after calling setjmp. (b) Right after calling longjmp.

longjmp’s ret. addr.

third’s ret. addr.

second’s ret. addr.

| first’s frame | first's ret. addr.

User stack Shadow stack

(c) After longjmp jumps.

Figure 5. Snapshots of the two stacks during the execution
of the code in Figure 4.

flow will break, which is not desirable. Note that it is not
uncommon to come across with setjmp/longjmp pairs even

if the program to run does not explicitly contain them, as
they are necessities to implement exception handling in C°
and thus are widely used in the operating system and many
general-purpose libraries [41].

Vulnerabilities in Vanilla Repetitive Checking An in-
tuitive solution to differentiating the above exceptional se-
mantics and a real ROP attack is to keep popping the shadow
stack and repeat address comparison whenever a mismatch
is detected [12], and it is only when there is no match found
upon the exhaustion of the shadow stack that we confirm the
existence of a ROP attack. We name such a scheme vanilla
repetitive checking in this paper. The rationale behind vanilla
repetitive checking is that the root cause for the troublesome
semantics brought by setjmp/longjmp is their agnostic to
the shadow stack. Thus, having the shadow stack simulate
the behavior of the user stack should help. For example, after
sequentially popping the return address of longjmp, third
and second, we can then find a match in the case of Figure 5c,
from which we are safe to carry on execution as this could
not happen in case of a ROP attack.

However, vanilla repetitive checking has a security loop-
hole under our threat model (§ 3). Recall that an adversary in
our settings is able to corrupt the return addresses stored by
setjmp, causing the control flow subverted to anywhere she
wants after the execution of the associated longjmp. Such
corruption is actually a one-gadget ROP. The instructions
between the hijack destination instruction and its nearest
return instruction actually form a ROP gadget. Although the
gadget may not be able to perform a targeted attack due to
the lack of cooperation with other gadgets, still, it suffices
to break the normal execution of a program, which raises
non-trivial security concerns. The practical issue of vanilla
repetitive checking is that it is not able to detect such type
of ROP, as long as the gadget is located in functions that are
not returned.

More concretely, consider the example in Figure 4 and Fig-
ure 5, again. If the return address stored by setjmp() is mod-
ified to an address that points to somewhere in the middle of
auxiliary(), then the execution of longjmp() may cause
the control flow to start from that place, i.e., auxiliary()
will only be executed partly, instead of completely. Note that
such abnormal behavior is transparent to vanilla repetitive
checking, as it only cares about whether the return address
stored at the top of the shadow stack matches one stored in
the current stack frame when first() returns. In a word,
vanilla repetitive checking does not close the backdoor for
the special type of ROP mentioned above.

Enhanced Repetitive Checking To make it harder to by-
pass repetitive checking, we enhance the defense by also
taking into account the integrity of the stack pointer. More
precisely, when making a call to a function, we store both the

®The call to setjmp is analogous to a try statement in other languages,
while the call to longjmp is like throw.

return address and the current stack pointer in the shadow
stack. Accordingly, when the function returns, we not only
verify the return address, but also the stack pointer. The
intuition here is that, according to our observation, the stack
pointer is highly versatile. This means that if a function is
executed with different portions, the stack pointer is likely to
end up with different locations. In other words, if a function
does not return to its caller at the expected return address
but some point later, we can identify such misbehavior with
significant probability at the end of the caller function by
verifying the stack pointer. It is worth mentioning that while
we are not the only one to advocate jointly verifying re-
turn addresses and stack pointers [13, 31], we are the first to
discuss the security benefit of doing so.

7 Performance Optimization

In adherence to R3, we propose to optimize the runtime
overhead of shadow-stack-related operations with the aid of
the return address stack which already exists in a processor.
Return Address Stack High-performance processors typ-
ically predict the next fetch address in parallel to the instruc-
tion cache access for improving the flow in the instruction
pipeline. In particular, the prediction of the target of return
instructions is treated as a special case and is performed
by a specialized hardware unit called return address stack
(RAS) [19]. The RAS is a last-come-first-out (LIFO) structure,
where every time the processor makes a function call, the ad-
dress of the next instruction is regarded as the return target
and thus pushed in. When a return instruction is fetched’,
the youngest entry in RAS is then popped out and used as
the predicted destination. In this sense, RAS resembles the
shadow stack in CSDrop much, both in the working behav-
ior and the transparency to programmers. Given the on-chip
nature of RAS, the performance of managing the shadow
stack can be significantly boosted if the stack is implemented
in RAS, instead of on caches and the physical memory?®.
However, RAS cannot be directly used as the shadow stack
in CSDrop for its failure of fulfilling R2 in two aspects. First,
originally introduced for accelerating return target predic-
tion, RAS only accounts for the prediction for normal call/ret
pairs. It cannot accommodate exceptional scenarios as men-
tioned above (§ 6), neither can it be programmed to perform
repetitive checking. Second, as an on-ship hardware unit,
RAS is small in size (typically tens to hundreds of slots) and
thus easy to overflow. In case of a RAS overflow, even if there
is no ROP attack presenting, a mismatch between the return
address in the current stack frame and the top entry in RAS
can still occur due to the loss of address copies. Note that the
mess brought by RAS overflows cannot be tolerated even if

70r, is predicted to be fetched by the branch target buffer (BTB).

8Even if the whole shadow stack is cached near to the processor, e.g. in
L1 cache, the access to RAS still looks faster as it takes place in the decode
stage, while the access to the shadow stack happens in the execution stage.

they seldom happen, as we aim to ensure the functionality
of protected programs in any case.

Leveraging the Assistance from RAS Still, there is a way
to utilize the fast access nature of RAS to optimize the per-
formance of CSDrop-to treat RAS as a cache of the shadow
stack. To be exact, we disable the customized micro-op trans-
lation for any return instruction in the first place and execute
it as usual. Depending on the return target predicted by RAS,
we take further actions accordingly:

e RAS hit: If the predicted target matches the return
address popped from the current stack frame, it im-
plies that no ROP attack has been mounted. In this
case, we do not need to bother accessing the shadow
stack. Instead, we only have to conceptually pop, i.e.,
through pointer decrement without actual access, the
corresponding return address and stack pointer stored
in the shadow stack for maintaining the consistency
between the shadow stack and the user stack.

e RAS miss: If a mismatch occurs, it may or may not
result from a RAS overflow. We thus retire the return
instruction and decode it again with customized micro-
ops to make use of the shadow stack.

Since in most cases the depth of function calls does not
exceed the capacity of RAS, we can frequently get rid of
the cost of accessing the shadow stack. In Section 9, we will
empirically evaluate the performance bonus brought by such
an optimization strategy.

8 Implementation

In brief, we have integrated CSDrop into the gem5 simulator
[3] in evaluated in system-call emulation (SE) mode, with
around 1500 lines of code in total. The CPU we base on is
Deriv03CPU on the x86-64, which is consistent with most
of the modern processors with advanced features realized
including pipelining, speculative execution as well as out-of-
order execution.

8.1 Integration in gem5

In this section, we elaborate on necessary details of the in-
tegration efforts in gem5. While we will also provide the
detailed code in the supplementary materials, readers can
refer to Figure 6 for gaining a logical view on which parts of
the computer architecture have been engineered, or at least
involved, in the first place.

The Shadow Stack In the virtual memory space of the x86-
64, bytes indexed from 0x00000000_00000000 to 0x00007F
FF_FFFFFFFF composes user space, while bytes indexed from
OxFFFF8000_00000000 to OxFFFFFFFF_FFFFFFFF comprises
the kernel space. Thus, we allocate a shadow stack up to 8MB
for each process in between the two parts to avoid bothering
with the kernel as well as preventing any possible conflict
with users’ applications (src/sim/process. hh and process
.cc). We identify the current range of the shadow stack by

Memory
Rollback access
PC CSD - queue
.“:; g decoder 8 £ e | ¥ ®
Return S 3 3 §'§ g Data &
° £ z Regular S |= &8 | |Reorder|] h =
address S & ol © & E [cache =
g 8 decoder] = O 3 buffer =
stack 2 g = =0 AN g
g 2 2 .a 'g .)
2| |2 o JREE | Regiser N\ |5
Branch = [«—
target v
predictor
Issue
queue
Incremen . Microop >
ted PC Dispatcher cache
Branch >
predictor)
Write
Fetch Decode Rename Issue Execute Back
Processor
4>| Translation lookaside buffer I:
\ v
e
g User space Shadow stack Kernel space
=

Figure 6. Modifications (orange shaped part) that CSDrop makes on gem5.

using two logical registers, t 10 and t11, which record the top
and the bottom, respectively. We also define a previlige for
accessing the shadow stack src/mem/request . hh, and grant
that previlige to no microops but the CSDrop-related ones
(src/cpu/base_dyn_inst.hh). With that, the TLB is able
to perform access control (src/x86/tlb. cc) on the shadow
stack for every data access microop, as detailed in Section 5.
Microop Customization As mentioned in Section 4.1, the
native-to-microop translation in context sensitive decoding
(CSD) depends on both the context information (ctx) and
the current microop program counter (microPC). With CSD
enabled, when decoding an instruction all of its associated
microops are first gathered (src/arch/x86/decoder.cc).
Then given the ctx and microPC that are determined in the
fetch stage (src/cpu/o3/fetch_impl.hh), the decoder is
able to pick up the proper microop to execute (src/arch/x86
/insts/macroop.hh). Atop the CSD framework, we cus-
tomize the translation rules, i.e., the mapping of instruc-
tion/context/microPC to microop, of call and ret instructions
(src/arch/x86/isa/insts/general_purpose/control_t
ransfer/call.py and xreturn.py), to realize the design
described in Section 6.

Interaction with RAS As elaborated in Section 7, we per-
form normal decoding for return instructions and only re-
encode to involve the shadow stack when a RAS miss occurs.
In practice, RAS misses can be observed when the return tar-
get is computed at the execute stage (src/cpu/o3/iew_impl

.hh). This result can then be shared with other stages in the
pipeline via different TimeBuffers. Upon a RAS miss, the
commit stage aborts the related speculatively executed in-
structions, while the fetch stage updates ctx and microPC
for re-encoded the corresponding return instruction.

Dynamic Instructions In gem5, the data structure for an
instruction is static, meaning that originally, instructions of
the same address are tightly coupled in terms of ctx and
microPC when they appear concurrently in the pipeline,
which causes unintended behaviors as they are expected
to be independent. We sidestep this pitfall by adding addi-
tional attributes to that data structure so that instruction in-
stances are dynamic, i.e., they can be uniquely distinguished
(src/arch/x86/insts/macroop. hh). This attributes to most
of the complexity and debugging efforts of CSDrop, however,
we defer the details to the code.

System Call Binding Insyscall emulation (se) mode,
system calls cannot be directly emulated, which hardens the
demonstration of how ROP can subvert the control flow in
the absence of CSDrop. To circumvent, we bind system calls
in the simulator to those in the host machine (src/sim/sysca
11_emul.hh) such that a ROP launched in an application run-
ning atop the simulator can make system calls that take effect
on the host machine.

8.2 Auxiliary Tools

To showcade the defense effectiveness of CSDrop, the testing
application running atop our modified gem5 should attempt
to launch a ROP attack. To that end, we resort to two addi-
tional useful tools.

The RIPE Attack Suite [44] is an attack testbed proposed
to quantify the protection coverage of any defense measure
by performing a wide range of buffer-overflow attacks. More
concretely, the software itself is both an attacker and a victim.
It is programmed to expose a buffer overflow vulnerability,
and at runtime, to attack itself by loading a predefined ma-
licious payload to the associated buffer. To perform ROP
attacks, we need to prepare a payload that overwrites the
user stack with necessary gadget pointers and immediate
data, similar to what is exemplified in Figure 1. A successful
construction of the payload requires the runtime knowledge
of the stack layout, as well as the addresses of exploitable
gadgets in the software or its included libraries.

ROPGadget [35] is a powerful tool that facilitates the
searching process of ROP gadgets on a wide variety of plat-
forms such as x86, ARM, and MIPS. For statically linked
binaries, the addresses ROPGadget calculates are the same
as what will be at runtime. For dynamically linked libraries,
on the other hand, what are reported by ROPGadget are rel-
ative to the code segment, which requires that the absolute
address of the code segment be determined a priori.

9 Evaluation

We evaluate the effectiveness of CSDrop under realistic set-
tings. We organize our evaluation by assessment angle with
the following key results.

e CSDrop can thwart multiple ROP instances, fulfilling
the security requirement R1.

e CSDrop is shown to properly handle the expectional
semantics induced by setjmp/longjmp pairs, satifying
the functionality requirement R2.

o The fully optimized CSDrop can induce an average
overhead as subtle as 0.76%, meeting the performance
requirement R3.

9.1 Methodology

Experimental setup All the experiments are conducted
on a Ubuntu 16.04 LTS host machine with 4.4.0 as the Linux
kernel version and x86-64 as the underlying instruction
set architecture. The host machine is equipped with a 8-
core Intel(R) Xeon(R) CPU E3-1230 V2 @ 3.30GHz CPU
and 32GB Memory. The used gem5 simulator is of version
stable_2015_09_03 and it runs in syscall emulation
(se) mode. During simulation, we enable cache, use x86_de
tailed as CPU type and 8GB as memory size. For each bench-
mark program in SPEC CPU 2006, we run till its termination
or reaching an instruction count of 2 x 10°.

Table 2. The gadgets in RIPE that we use in launching ROPs.

Starting Address Gadget Content

0x491176 pop rax; pop rdx; pop rbx; retq
0x44e140 mov eax 0x3b; syscall
0x404e16 pop rdi; ret

0x4536e6 pop rdx; ret

0x404£37 pop rsi; ret

0x453709 pop rdx; pop rsi; ret

0x40044a syscall

rop_sled5[14]

0x491176 rop_sled4[13]
0x3b 0x491176
(padding) 0x3b
(padding) (padding)
0x404¢16 (padding) rop_sled3[9]
&rop_sled5[13] 0x404¢16 0x404¢16
0x4536e6 &rop_sled4[12] || &rop_sled3[8]
&rop_sled5[12] 0x453709 0x453709
0x404£37 &rop_sled4[11] || &rop_sled3[7]
&rop_sled5[11] || &rop_sled4[10] || &rop_sled3[6]
0x40044a 0x40044a 0x44e140
&rop_sledS[13] || &rop_sled4[12] || &rop_sled3[8]
0x0 0x0 0x0
“/bin/sh\0” “/bin/sh\0” “/bin/sh\0”

(a) 5-gadget.

(b) 4-gadget.

(c) 3-gadget.

Figure 7. The buffer overflow payload for our ROP attacks
with different numbers of involved gadgets.

Datasets and Benchmark Programs As mentioned in
Section 8.2, we utilize the RIPE attack suite to simulate ROP
attacks. Specifically, we choose to launch ROP leveraging the
buffer overflow vulnerability that is located on stack and
exposed by memcpy (). As there is no standard benchmark for
testing the handling of setjmp/longjmp semantics, we use
the homebrew C program as previously given in Figure 4 and
analyzed in Section 6. Finally, for measuring the performance
impact atop gem5 simulator, we use benchmark programs
from SPEC CPU 2006 [22], a CPU-intensive benchmark suite
standardized by the industry.

Metrics We care about whether the testing programs re-
turn expected results (e.g., prompting expected character
strings) when evaluating the security and functionality. When
examining the performance, we concern the metrics system.
cpu.numCycles indicated by gem5. We are also interested in
the hit rate of the RAS, which can explain the performance

SongEnOEIaT ke o/ bUS . [DUITA/NGGenS opt /contias/exompl&7e by < JRIPE ReSter/BUITS/ripe atack generator o - hencey -t direct L
stack -c ret) Caches --cu-type=x@6_detailed - -enable-ctx.decode[--deTense-node=0]
gem5 Simulator SysTem. tip://gens.org

gems is copyrighted Softuare; use the --copyright option for details.

gen5 compiled May 21 2019 02:14:46
ens started bay 21 2015 95:38:34

en5 executing on matricks, pid 24505
Command Line: . /build/XE6/gens ope /contios/example/se.py -c ../RIPE-naster/build/ripe attack generator o -f nencpy -t direct -1 stack -c
"1 rop3' --caches --cpu-type=xBb_detailed --enable-ctx-decode --defense-nod

ret

lobal freauency set ot 1000060000000 ticks per secons
warn: DRAM device capacity (8192 Mbytes) does not match the address range assigned (512 Mbytes)
Sten. renote. o0, Listaner Listenind for.renote.adb 0 on pors 7000
m Clockedobjzct: Hore than one power state Thange request encountered within the same simlation tick
* REAL SIMULATION
Info: Entering event aueve @ arting sinulation. ..
Varn: X85 tposdTamily exc060: un)mp\emented foncrion 7
warn: readlink() called on '/proc/self/exe’ may yield unexpected results in various settings
RETurning *fhone, samqon RLPE macrer/buiid) ipe Sreack sencrator
warn: ignoring syscall access(...)
target_addr == 0x717ffffe5bas
buffer == Ox7ffffffes660
psize == 1320
Stack_buffer == Ox7TFFFfffess60

guerflou ptr: Gx6ddbe0
ROP Stedding ...

IPi-nister ROPgadget branch csd-bu gemS spec2066 srop-poc te3

PID TTY TIME CMD
4437 pts/3 00:00:00 bash
4505 pts/3 00:00:00 sh
4507 pts/3 00:00:00 ps

echo ROP attack succeeded!
0P attack succeeded!

(a) Without CSDrop.

s-bus . /build/X86/gens.opt ./configs/example/se.py -C ../RIPE-master/build/ripe_attack_generator -0 -f memcpy -t direct -1
hes --cpu- type=xB5_detailed - -enable-ctx-decode [--Gefense-mode=2]

hitp:/gens.or

Sottware; use the

sangongenatricks:

t
lgens Simutator Sy

a
gens is copyright -copyright option for details.

gens compiled May 21 2019 02:14:46

/RIPE-master/build/ripe_attack_generator -0 '-f memcpy -t direct -1 stack -c ret

~defense-mode=2

conmand Line: ./build/X86/genS.opt ./configs/exanple/se.py -
caches --cpu-type-x86_datailed - -enable-ctx.-decode

Global frequency set at 100000000000 ticks per second

Jvarn: DRAM device capacity (8192 Mbytes) does not match the address cange sssigned (512 Mbytes)

0: systen.remote_gdb. listener: listening for remote gdb #0 on port 76

warn: ClockedObject: More than one power state change request ECauntered within the sane simulation tick
#4+ REAL SIMULATION **

info: Entering event queue @ 8. Starting sinulation

warn: x86 cpuid family 6x0000: unimplemented function 7

warn: readlink() called on '/proc/self/exe’ may yield unexpected results in various settings

eturning '/hone/sangong/RIPE- naster/buiio/rape_attack generator:
warn: ignoring syscall access
target_addr = Ox7ffffffeshas

burfer = oo resood
paize —

eI

Jover flow_ptr: x6ddbae

Fratye it

panic: fault (stock) detected @ PC (6xa07524m=0xd08e26) - (13=15]

(b) With CSDrop.

Figure 8. The effectiveness of performing the 3-gadget ROP in the absence and presence of defense from CSDrop.

gain by leveraging RAS. This can be derived by collecting
two additional metrics: system. cpu.branchPred.usedRAS
and system.cpu.branchPred.RASInCorrect.

9.2 Defense Effectiveness

The foremost task of CSDrop is to defend against ROP, so
we first verify its security under realistic attacks. We aim to
construct three ROP attacks that rely on 3, 4, and 5 gadgets,
respectively. For each attack instance, we first disassemble
the binary of the original RIPE to obtain its x86 assembly
code and the corresponding memory layout on load. We
then use ROPGadget to search for prospective gadgets, from
which we opt to use the ones as listed in Table 2. We then
carefully craft the buffer overflow payload as detailed in
Figure 7, with the purpose of opening a shell upon success.
We then hardcode the payload in the source code of RIPE and
finally recompile RIPE. In expectation, when the modified
RIPE is run atop gemb, it should utilize the predefined buffer
overflow vulnerability to attack itself. If CSDrop is disabled,
nothing should prevent the control from being subverted to
host’s shell program. Otherwise, the attack should be detected
and a corresponding exception should be thrown to notify
the RIPE user. In reality, all the tests pass. For brevity, we
here only report the screenshots of performing the 3-gadget
ROP with and without defense backed by CSDrop in Figure 8.
As depicted, when CSDrop is absent, our 3-gadget attack is
successfully launched and the attacker can thereby execute
shell command of her choices such as 1s, ps and echo. On
the other hand, if CSDrop is enforced, no shell is opened but
a customized panic message of gem5 is prompted instead.
Note that our homebrew attacks are representative as their
construction is strictly aligned with the standard method of
launching a ROP. We hence conclude that CSDrop effectively
thwarts ROP, fulfilling the security requirement R1.

9.3 Setjmp/longjmp Handling

We next delve into the effectiveness of CSDrop in preserv-
ing the functionality of the program it protects. Although

10

sangong@matricks:~/csd-bus ./build/XB6/gens.opt ./configs/exanple/se.py -c ./setjmp --caches --cpu-type=x86_detailed --enable-ctx-decode --defe
gen5 Simulator System. http://gens.org
gem5 is copyrighted software; use the --copyright option for details

gem5 compiled May 21 2019 02:14:46

command Uine: ./build/X86/gen5.opt ./configs/example/se.py -c ./setjmp --caches --cpu-type=xB6_detailed --enable-ctx-decode --defense-mode=2

Global frequency set at 1000000000000 ticks per second

jam: DRAN device capacity (8152 Moytes) doss not match the adiress range sssigned (512 Moytes)

0: system. remote_gdb. listener: listening for remote gdb #0

warn: Clocked0bject Wore than one power state change request Encountered within the same simlation tick
AL STHULATION

Into: Entering event queue @ 0. Starting simlation

warn: xB6 cpuid family 0x0000: unimplemented function 7

readlink() called on '/proc/self/exe’ may yield unexpected results in various settings

Returming -/lome/somgong/cod-bu/setim"

ignoring syscall access(

in
Exiting @ fick 30976500 because target called exit()
sangongamat ricks:~/csd-bu

Figure 9. The execution result of the program described in
Figure 4 atop CSDrop-enabled gem5.

the evaluation in Section 9.2 already implies such a prop-
erty’, in this section we explicitly and thoroughly test this
aspect with intentionally introduced setjmp/longjmp calls.
As mentioned in Section 6, CSDrop should be able to handle
the mismatch of return addresses by correctly precluding the
disruption brought by setjmp/longjmp. As for running the
example program in Figure 4, the expected output to stdout
should be:

main

first

if

second

third

else

back to main

As shown in Figure 9, we get exactly the expected result
when running this program atop CSDrop-enabled gem5, in-
stead of emitting any false positive detection signal. Again,
we do not need other testing programs as the used program
suffices to prove the effectiveness of CSDrop on dealing with
exceptional semantics induced by setjmp/longjmp. In short,
CSDrop can satisfy the functionality requirement R2.

9Otherwise the modified RIPE will not attempt to perform the predefined at-
tack and the exception will thus not be thrown, with significant probability.

52.13

Overhead (%)
[%] (%3 B wn
f=] o O (=]
1 1 1 1

28.81
19.99
i 11.59 1687 B2 35
6.18
029 [l 010
& ‘&@:&QQ &“% ((\c:.‘ R *o’l;‘@’ & @ﬂ@xeﬁ @(‘\eeﬁ 1}6\)%6@ @9&1\ “ %\»\e’bé &6\6 P O«QO 8 sq“;&.;?)
° @0‘0 o
(a) Without RAS.
3
2.55
g 2 1 1.84 1.99
K]
3 1.17
' s i 0.75 0.70 0,63
; 0.34 036 oo
. 0.04 : 015 g1 0.07
oo R & @ s ¢ e = &9 W O & e
oo ¢ o o A ST g e Q%w‘f'o & ngzo &
(b) With RAS.
Figure 10. The runtime overhead of CSDrop with and without the utilization of RAS.
Table 3. RAS hit rates summary for CSDrop with the 16 SPEC CPU 2006 programs.
Program RAS Hit Rate ‘ Program RAS Hit Rate | Program RAS Hit Rate | Program RAS Hit Rate
gee 0.999938592 | astar 0.99999983 gamess 0.99987879 namd 0.999985737
omnetpp 0.999603741 | bzip2 0.99999824 zeusmp 0.999649639 | GemsFDTD 0.99999432
sjeng 0.99998018 milc 0.99999775 cactusADM 0.99994351 wrf 0.999998083
mcf 0.99971583 bwaves 0.999998634 | leslie3d 0.998435288 sphinx3 0.99999938

9.4 Runtime Performance

It finally comes to the evaluation of the impact that CSDrop
has on the end-to-end performance of the original system.
As we are conducting experiments on top of gem5, collect-
ing the simulated running time of benchmark programs is
meaningless. Instead, we resort to the number of clock cycles,
which is proportional to the actual running time in reality.
For each of our selected 16 benchmark programs that are
drawn from SPEC CPU 2006, we run three passes of exper-
iments: the first is with unmodified gem5, the second and
the third one are with CSD-assisted gem5 with and without
RAS as a means of performance optimization, respectively.
By comparing the results of the first two passes, we obtain
the results as illustrated in Figure 10a, while by comparing
the results of the first and last pass we attain the results as
shown in Figure 10b.

We first notice that even without the involvement of RAS,
the performance overhead of CSDrop is mild, with the mean

11

being 12.90% and median being 9.29%. The maximum over-
head, which occurs in the execution of omnetpp, is only
52.13%. This is not only acceptable but outperforms most
of the software implementations of shadow stack including
ROPdefender [14] whose average overhead on integer bench-
mark programs and floating-point ones are 41% and 117%,
respectively. Moreover, the performance potential of CSDrop
is fully unlocked when the hardware RAS gets involved: the
average and median overhead is as low as 0.76% and 0.56%,
respectively. This beats the state-of-the-art hardware shadow
stack [13] whose average overhead is around 4.6%.

We further look into the source of such performance bene-
fit by studying the RAS hit rate. As mentioned above (7), if the
predicted target matches the return address that is popped
from the stack, we can assure that there is no ROP launched
and can thus be free from bothering with the shadow stack
access. As summarized in Table 3, the RAS hit rate is high
enough, with the mean and median being 99.99% and 99.99%,

respectively. This explains why we can avoid accessing our
shadow stacks most of the time and thus reap the maximum
performance benefits by realizing a hardware shadow stack.
To conclude, CSDrop exhibits near-optimal runtime cost,
meeting the performance requirement R3.

10 Discussion

Portability CSDrop is a general solution that can be widely
adopted in reality for the following three reasons:

1. It is orthogonal to other defense mechanisms and thus
does not rely on the presence of them, as mentioned
in our threat model (§ 3).

2. It operates at the CPU level and thus does not require
any modification or recompilation of applications.

3. The modification that CSD and CSDrop perform on the
CPU is feasible with the well-established microcode
update procedure, as mentioned in Section 4.1.

4. Although we demonstrate the feasibility atop the x86-
64 architecture, CSDrop does not rely on any special-
ized hardware unit. In other words, we expect it can
be seamlessly ported to other platforms such as ARM.

11 Related Work

Hardware Shadow Stack As mentioned in Section 2.2,
shadow stacks have long been explored in fighting against
ROP attacks. However, most of the existing implementation
are based on software design [12, 14, 31, 34], which is hard to
realize the four requirements listed in Section 4.2. The work
that is most closely related to ours is the parallel shadow
stack that is implemented with the assistance of hardware
[13]. As shown in Section 9.4, its performance overhead is
one order-of-magnitude larger than that of CSDrop. More-
over, it does not explicitly describe their handling of the
exceptional scenarios and potential security pitfall if dealt
with wrongly as we do in Section 6. It is also noteworthy
that Intel also includes hardware shadow stack in its Control-
Flow Enforcement Technology (CET) [1]. However, there is
no open-sourced documentation on its implementation de-
tails due to the interests of the business. We are thus curious
about the differences between CSDrop and that design.

12 Conclusion

In this paper, we present CSDrop to secure applications from
being attacked by ROP. As its core, CSDrop introduces subtle
and feasible changes in the CPU to realize a hardware version
of shadow stacks. Compared to related works, CSDrop is one
of the few that achieves full security, untapped functionality,
ideal performance, and wide portability at the same time.

References

[1] 2016. Intel Releases New Technology Specifications to Protect Against
ROP attacks. https://software.intel.com/content/www/us/en/develop/

12

blogs/intel-release-new-technology-specifications-protect-rop-
attacks.html
2021. China National Vulnerability Database of Information Security.
http://www.cnnvd.org.cn/
Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar
Krishna, Somayeh Sardashti, et al. 2011. The gem5 simulator. ACM
SIGARCH computer architecture news 39, 2 (2011), 1-7.
Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazieres, and
Dan Boneh. 2014. Hacking blind. In 2014 IEEE Symposium on Security
and Privacy. IEEE, 227-242.
Tyler Bletsch, Xuxian Jiang, Vince W Freeh, and Zhenkai Liang. 2011.
Jump-oriented programming: a new class of code-reuse attack. In
Proceedings of the 6th ACM Symposium on Information, Computer and
Communications Security. 30-40.
[6] Harold Booth, Doug Rike, and Gregory A Witte. 2013. The national
vulnerability database (nvd): Overview. (2013).
[7] Erik Bosman and Herbert Bos. 2014. Framing signals-a return to
portable shellcode. In 2014 IEEE Symposium on Security and Privacy.
IEEE, 243-258.
Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage.
2008. When good instructions go bad: Generalizing return-oriented
programming to RISC. In Proceedings of the 15th ACM conference on
Computer and communications security. 27-38.
Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner,
and Thomas R Gross. 2015. Control-flow bending: On the effective-
ness of control-flow integrity. In 24th {USENIX} Security Symposium
({USENIX} Security 15). 161-176.
Nicholas Carlini and David Wagner. 2014. {ROP} is Still Dangerous:
Breaking Modern Defenses. In 23rd {USENIX} Security Symposium
({USENIX} Security 14). 385-399.
Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza
Sadeghi, Hovav Shacham, and Marcel Winandy. 2010. Return-oriented
programming without returns. In Proceedings of the 17th ACM confer-
ence on Computer and communications security. 559-572.
Tzi-cker Chiueh and Fu-Hau Hsu. 2001. RAD: A compile-time solution
to buffer overflow attacks. In Proceedings 21st International Conference
on Distributed Computing Systems. IEEE, 409-417.
Thurston HY Dang, Petros Maniatis, and David Wagner. 2015. The
performance cost of shadow stacks and stack canaries. In Proceedings
of the 10th ACM Symposium on Information, Computer and Communi-
cations Security. 555-566.
Lucas Davi, Ahmad-Reza Sadeghi, and Marcel Winandy. 2011. ROPde-
fender: A detection tool to defend against return-oriented program-
ming attacks. In Proceedings of the 6th ACM Symposium on Information,
Computer and Communications Security. 40-51.
Ulfar Erlingsson, Martin Abadi, Michael Vrable, Mihai Budiu, and
George C Necula. 2006. XFI: Software guards for system address spaces.
In Proceedings of the 7th symposium on Operating systems design and
implementation. 75-88.
Isaac Evans, Sam Fingeret, Julian Gonzalez, Ulziibayar Otgonbaatar,
Tiffany Tang, Howard Shrobe, Stelios Sidiroglou-Douskos, Martin
Rinard, and Hamed Okhravi. 2015. Missing the point (er): On the
effectiveness of code pointer integrity. In 2015 IEEE Symposium on
Security and Privacy. IEEE, 781-796.
Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard Shrobe, Martin
Rinard, Hamed Okhravi, and Stelios Sidiroglou-Douskos. 2015. Control
jujutsu: On the weaknesses of fine-grained control flow integrity. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. 901-913.
Enes Goktas, Elias Athanasopoulos, Herbert Bos, and Georgios Por-
tokalidis. 2014. Out of control: Overcoming control-flow integrity. In
2014 IEEE Symposium on Security and Privacy. IEEE, 575-589.

[2

—

E

—

[4

[l

(5

—

[8

[t

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

https://software.intel.com/content/www/us/en/develop/blogs/intel-release-new-technology-specifications-protect-rop-attacks.html
https://software.intel.com/content/www/us/en/develop/blogs/intel-release-new-technology-specifications-protect-rop-attacks.html
https://software.intel.com/content/www/us/en/develop/blogs/intel-release-new-technology-specifications-protect-rop-attacks.html
http://www.cnnvd.org.cn/

(19]

[20]

[21]

[22]

(23]

(24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32

—

(35]
(36]

(37]

(38]

Antonio Gonzalez, Fernando Latorre, and Grigorios Magklis. 2010. Pro-
cessor microarchitecture: An implementation perspective. Synthesis
Lectures on Computer Architecture 5, 1 (2010), 1-116.

Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard.
2016. Flush+ Flush: a fast and stealthy cache attack. In International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment. Springer, 279-299.

Part Guide. 2011. Intel® 64 and ia-32 architectures software developer’s
manual. Volume 3B: System programming Guide, Part 2, 11 (2011).
John L Henning. 2006. SPEC CPU2006 benchmark descriptions. ACM
SIGARCH Computer Architecture News 34, 4 (2006), 1-17.

Jason Hiser, Anh Nguyen-Tuong, Michele Co, Matthew Hall, and
Jack W Davidson. 2012. ILR: Where’d my gadgets go?. In 2012 IEEE
Symposium on Security and Privacy. IEEE, 571-585.

Tim Kornau et al. 2010. Return oriented programming for the ARM
architecture. Ph.D. Dissertation. Master’s thesis, Ruhr-Universitat
Bochum.

Volodymyr Kuznetzov, Laszlo Szekeres, Mathias Payer, George Can-
dea, R Sekar, and Dawn Song. 2018. Code-pointer integrity. In The
Continuing Arms Race: Code-Reuse Attacks and Defenses. 81-116.
Jinku Li, Zhi Wang, Xuxian Jiang, Michael Grace, and Sina Bahram.
2010. Defeating return-oriented rootkits with" return-less" kernels.
In Proceedings of the 5th European conference on Computer systems.
195-208.

J Ligatti, M Abadi, M Bidiu, and U Erlingsson. 2005. Control Flow
integrity. In Proceedings of the 12th ACM Conference on Computer and
communications security.

Ali Jose Mashtizadeh, Andrea Bittau, Dan Boneh, and David Maziéres.
2015. CCFI: Cryptographically enforced control flow integrity. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. 941-951.

Kaan Onarlioglu, Leyla Bilge, Andrea Lanzi, Davide Balzarotti, and
Engin Kirda. 2010. G-Free: defeating return-oriented programming
through gadget-less binaries. In Proceedings of the 26th Annual Com-
puter Security Applications Conference. 49-58.

Yossef Oren, Vasileios P Kemerlis, Simha Sethumadhavan, and An-
gelos D Keromytis. 2015. The spy in the sandbox: Practical cache
attacks in javascript and their implications. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security.
1406-1418.

Hilmi Ozdoganoglu, TN Vijaykumar, Carla E Brodley, Benjamin A
Kuperman, and Ankit Jalote. 2006. SmashGuard: A hardware solution
to prevent security attacks on the function return address. IEEE Trans.
Comput. 55, 10 (2006), 1271-1285.

Vasilis Pappas, Michalis Polychronakis, and Angelos D Keromytis.
2012. Smashing the gadgets: Hindering return-oriented programming
using in-place code randomization. In 2012 IEEE Symposium on Security
and Privacy. IEEE, 601-615.

Team PaX. 2003. PaX address space layout randomization (ASLR).
http://pax. grsecurity. net/docs/aslr. txt (2003).

Manish Prasad and Tzi-cker Chiueh. 2003. A Binary Rewriting De-
fense Against Stack based Buffer Overflow Attacks.. In USENIX Annual
Technical Conference, General Track. 211-224.

Jonathan Salwan. 2011. ROPgadget-Gadgets finder and auto-roper.
Arzon, France, Tech. Rep., Mar (2011).

David Seal. 2001. ARM architecture reference manual. Pearson Educa-
tion.

Hovav Shacham. 2007. The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86). In Proceedings of
the 14th ACM conference on Computer and communications security.
552-561.

Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra
Modadugu, and Dan Boneh. 2004. On the effectiveness of address-
space randomization. In Proceedings of the 11th ACM conference on

13

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Computer and communications security. 298-307.

Kevin Z Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko,
Christopher Liebchen, and Ahmad-Reza Sadeghi. 2013. Just-in-time
code reuse: On the effectiveness of fine-grained address space layout
randomization. In 2013 IEEE Symposium on Security and Privacy. IEEE,
574-588.

Eugene H Spafford. 1989. The Internet worm program: An analysis.
ACM SIGCOMM Computer Communication Review 19, 1 (1989), 17-57.
W Richard Stevens and Stephen A Rago. 2008. Advanced programming
in the UNIX environment. Addison-Wesley.

Mohammadkazem Taram, Ashish Venkat, and Dean Tullsen. 2018.
Mobilizing the micro-ops: Exploiting context sensitive decoding for
security and energy efficiency. In 2018 ACM/IEEE 45th Annual Interna-
tional Symposium on Computer Architecture (ISCA). IEEE, 624-637.
Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway,
Ulfar Erlingsson, Luis Lozano, and Geoff Pike. 2014. Enforcing forward-
edge control-flow integrity in {GCC} & {LLVM}. In 23rd { USENIX}
Security Symposium ({USENLX} Security 14). 941-955.

John Wilander, Nick Nikiforakis, Yves Younan, Mariam Kamkar, and
Wouter Joosen. 2011. RIPE: Runtime intrusion prevention evalua-
tor. In Proceedings of the 27th Annual Computer Security Applications
Conference. 41-50.

Yuval Yarom and Katrina Falkner. 2014. FLUSH+ RELOAD: A high
resolution, low noise, L3 cache side-channel attack. In 23rd {USENIX}
Security Symposium ({USENIX} Security 14). 719-732.

Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres,
Stephen McCamant, Dawn Song, and Wei Zou. 2013. Practical control
flow integrity and randomization for binary executables. In 2013 IEEE
Symposium on Security and Privacy. IEEE, 559-573.

Mingwei Zhang and R Sekar. 2013. Control flow integrity for {COTS}
binaries. In 22nd {USENIX} Security Symposium ({USENIX} Security
13). 337-352.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Return-Oriented Programming
	2.2 Limitations of Software Defense

	3 Assumptions and Threat Model
	4 CSDrop Overview
	4.1 Context-Sensitive Decoding
	4.2 CSDrop Overview

	5 Access Control of the Shadow Stack
	6 Handling Exceptional Semantics
	7 Performance Optimization
	8 Implementation
	8.1 Integration in gem5
	8.2 Auxiliary Tools

	9 Evaluation
	9.1 Methodology
	9.2 Defense Effectiveness
	9.3 Setjmp/longjmp Handling
	9.4 Runtime Performance

	10 Discussion
	11 Related Work
	12 Conclusion
	References

